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ABSTRACT
DRA7xx Infotainment Application Processor offers an audio solution based on the multichannel audio
serial port (McASP). McASP is a very flexible interface capable of interfacing with audio devices using
protocols like Inter-IC Sound (I2S), PCM, TDM, S/PDIF. DRA7xx audio solution at Linux® kernel level uses
ALSA System-on-Chip (ASoC) layer with independent drivers for the DMA engine, CPU-side audio
interface and codecs.

This application report describes the DRA7xx audio device driver parameters and configuration needed to
interface with new audio devices (analog codecs) at the kernel level.

NOTE: All programming models and use cases presented in this document are provided for
educative purposes only and may differ from or be optimized for your applications.

All DRA7xx peripheral devices presented in this document are provided for illustration
purposes and may be different from those in your system.
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1 Introduction
DRA7xx infotainment application processor provides eight instances of the McASP. The McASP functions
as a general-purpose audio serial port optimized for the requirements of various audio applications.

McASP1 and McASP2 support 16 serializers with independent TX/RX clock and sync domains. McASP3
through McASP8 support four serializers with unified TX/RX clock/sync domains.

2 DRA7xx Audio on Linux/Android Kernel
DRA7xx audio solution uses the ASoC layer in the Linux kernel. ASoC has the following independent
components:
• Codec. Platform independent representation of the analog codecs. Codecs expose their Digital Audio

interfaces (DAI) (audio/HiFi port, voice port, and so forth) that can be bound with CPU side interfaces
• CPU DAI. CPU-side audio interface. McASP is the CPU DAI in DRA7xx processors. The McASP driver

can be found at sound/soc/davinci/davinci-mcasp.c
• Platform: The audio DMA engine. Two possible DMA controllers can be used:

– sDMA driver which is shared with OMAP processors and can be found at drivers/dma/omap-dma.c
and sound/soc/omap/omap-pcm.c

– eDMA driver which can be found at arch/arm/common/edma.c and drivers/dma/edma.c
• Machine: Device dependent component that glues above components together:

– The machine driver for TI DRA7 EVM primary card can be found at sound/soc/davinci/davinci-
evm.c. This is a shared machine driver for simple McASP based cards

– The machine driver for the DRA7 JAMR3 card can be found at sound/soc/davinci/dra7xx-jamr3-
card.c

The McASP CPU DAI and machine drivers are discussed in more detail in the context of the TI Linux
kernel in sections 3 and 4, respectively. sDMA/eDMA platform drivers are out of the scope of this
document.

3 Configuring McASP Driver
The McASP device driver supports:
• I2S, PCM, TDM and S/PDIF protocols
• Up to 32-channels/sots per serializer in TDM mode. 384 slots in DIT mode, used for S/PDIF

– The DIT mode is not actively supported in DRA7xx software releases
• Signed and unsigned 8/16/24/32 Little-Endian formats
• Sample rates from 8 kHz to 96 kHz
• Unified TX and RX clock and sync domains

3.1 Operational Mode
The McASP device driver differentiates two types of operation modes: I2S and DIT. I2S mode more
generally refers to time division multiplexing (TDM) mode. Digital Audio Interface Transmission (DIT)
mode is used for S/PDIF.

The operational mode is configured through the following Device Tree (DT) parameters:
• op-mode

– 0: I2S mode, used for I2S, PCM and TDM protocols
– 1: DIT mode, used for S/PDIF protocol

• tdm-slots. Number of TDM slots
– 1: Reserved value, do not use
– 2: Used for I2S
– 3-32: Used for PCM and TDM protocols
– 384: Used exclusively for S/PDIF
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The maximum number of slots or channels is 32 per serializer. If the requested number of channels is
higher than 32, the McASP driver tries to use as many enabled serializers as needed to satisfy the
channel count request.

Single serializer per stream direction is quite common. This mode allows play and capture audio streams
with channel counts equal or less than the TDM slots configured through DT, making the unused slots
inactive. The state during those inactive slots is logic low for serializers configured in TX mode, and high
impedance for those configured in RX mode.
McASP frame sync generator does not allow 1-slot mode, which is a reserved value in the tdm-slots
property. Mono is still possible but requires at least two slots, the McASP driver automatically sets the first
slot as the only active slot, while the rest of slots are put in inactive state. The McASP driver implements
this behavior only for single serializer configuration.

3.2 Serializers
The McASP serializers can be used as separate audio links interfacing with different audio devices. Each
serializer has its own pin (AXRn), configurable as transmitter or receiver.

For example, an audio link composed of one McASP and N analog stereo codecs can be configured in the
following ways:
• One serializer per stream direction. McASP data transmit pin is shared with data-in of all N analog

stereo codecs. Similarly, McASP data receive pin is shared with data-out of all codecs. TDM protocol is
required with a bit clock frequency of:

BCLK = N * 2 * SampleRate * BitsPerSample (1)
• N serializers per stream direction. Each analog codec is connected to different McASP transmit and

receive pins. I2S protocol can be used with a bit clock frequency of:
BCLK = 2 * SampleRate * BitsPerSample (2)

Bit clock is N times less than in single serializer case, but requires more additional hardware
connections between McASP and codecs pins.

• num-serializer. Number of serializers in the McASP instance, used and unused:
– 16: McASP1 and McASP2
– 4: McASP3 through McASP8

• serial-dir. Array describing the serializer direction
– 0: N-th serializer is inactive
– 1: N-th serializer is used for transmit
– 2: N-th serializer is used for receive

3.3 Audio FIFO
McASP has two interface ports: configuration (CFG) and data (DAT). Read/write accesses through CFG
port are done directly to the transmit/receive buffer (XRBUF) of a given serializer. XRBUF can store only a
single audio sample. Read/write accesses through DAT port offer an additional advantage, the McASP
Audio FIFO (AFIFO). The AFIFO can store up to 64 audio samples.

There are two AFIFOs per McASP instance: Write FIFO (WFIFO) and Read FIFO (RFIFO). The AFIFOs
have an event pacer that is a configurable threshold that reduces the number of DMA transactions. The
event pacer is helpful to reduce the effect of bus latency for high sample frequencies or long frames.
McASP generates a DMA request when there is room in the WFIFO for threshold samples or if the RFIFO
contains at least threshold samples.

AFIFO threshold is configured through the following DT parameters:
• tx-num-evt. WFIFO threshold. Number of samples between 1 and 64
• rx-num-evt. RFIFO threshold. Number of samples between 1 and 64

The AFIFO threshold imposes a constraint on the ALSA period size: the number of samples in the ALSA
period has to be an integer multiple of the threshold. The McASP driver refines the originally requested
threshold if it does not satisfy this constraint.
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3.4 McASP CPU DAI
McASP interface capabilities are exposed via struct snd_soc_dai_driver in the CPU DAI driver. The
driver exposes two entries: one for I2S/TDM mode named davinci-mcasp.0 and one for DIT/SPDIF mode
named davinci-mcasp.1. These two entries actually refer to the same interface so only one can be used at
a time.
#define DAVINCI_MCASP_PCM_FMTS (SNDRV_PCM_FMTBIT_S8 | \

SNDRV_PCM_FMTBIT_U8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_U16_LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_U24_LE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_U24_3LE | \
SNDRV_PCM_FMTBIT_S32_LE | \
SNDRV_PCM_FMTBIT_U32_LE)

#define DAVINCI_MCASP_RATES SNDRV_PCM_RATE_8000_192000

static struct snd_soc_dai_driver davinci_mcasp_dai[] = {
{

.name = "davinci-mcasp.0",

.playback = {
.channels_min = 1,
.channels_max = 32 * 16,
.rates = DAVINCI_MCASP_RATES,
.formats = DAVINCI_MCASP_PCM_FMTS,

},
.capture = {

.channels_min = 1,

.channels_max = 32 * 16,

.rates = DAVINCI_MCASP_RATES,

.formats = DAVINCI_MCASP_PCM_FMTS,
},
.ops = &davinci_mcasp_dai_ops,

},
{

.name = "davinci-mcasp.1",

.playback = {
.channels_min = 1,
.channels_max = 384,
.rates = DAVINCI_MCASP_RATES,
.formats = DAVINCI_MCASP_PCM_FMTS,

},
.ops = &davinci_mcasp_dai_ops,

},
};

The channel_max value of 512 in the TDM DAI entry above refers to the total number of channels in the
McASP instances that have 16 serializers, assuming all serializers are connected. Those interfaces are
McASP1 and McASP2. McASP3 through McASP8 have four serializers and the max channel count is 128
when all serializers are in use.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC09A


www.ti.com Configuring McASP Driver

5SPRAC09A–December 2015–Revised January 2017
Submit Documentation Feedback

Copyright © 2015–2017, Texas Instruments Incorporated

Interfacing DRA7xx Audio to Analog Codecs

3.5 Examples

3.5.1 McASP3 in I2S Mode
This example shows McASP3 instance configured in I2S mode (op-mode), which consists of two
slots/channels (tdm-slots).

McASP3 instance has 4 serializers (num-serializer), but only two are used: AXR0 is used for transmit
and AXR1 is used for receive (serial-dir), which are driven low during inactive slots. AXR2 and AXR3
are not used.
&mcasp3 {

status = "okay";

op-mode = <0>; /* MCASP_IIS_MODE */
tdm-slots = <2>;
/* 4 serializer */
serial-dir = < /* 0: INACTIVE, 1: TX, 2: RX */

1 2 0 0
>;
tx-num-evt = <8>;
rx-num-evt = <8>;

};

3.5.2 McASP6 in TDM Mode
This example shows McASP6 configured in 8-slots (num-slots) TDM mode (op-mode).

McASP6 instance also has four serializers (num-serializer), only the first two are used (serial-dir)
as shown in the previous example.
WFIFO and RFIFO are active, accessible through DAT port with a threshold of eight samples (tx-num-
evt, rx-num-evt).
&mcasp6 {

status = "okay";

op-mode = <0>; /* MCASP_IIS_MODE */
tdm-slots = <8>;
/* 4 serializer */
serial-dir = < /* 0: INACTIVE, 1: TX, 2: RX */

1 2 0 0
>;
tx-num-evt = <8>;
rx-num-evt = <8>;

};
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4 Configuring Analog Codec Driver
Analog codec capabilities are declared in the driver’s snd_soc_dai_driver structure. Example below
shows the DAI capabilities of the tlv320aic3x codec. In this case, the tlv320aic3x driver exposes one DAI
named tlv320aic3x-hifi that supports playback and capture and requires symmetric rates in full duplex
mode. The DAI link name will be used later in the machine driver’s DAI link array to specify what codec
DAI is being connected.
#define AIC3X_RATES SNDRV_PCM_RATE_8000_96000
#define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \

SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)

...

static struct snd_soc_dai_driver aic3x_dai = {
.name = "tlv320aic3x-hifi",
.playback = {

.stream_name = "Playback",

.channels_min = 2,

.channels_max = 2,

.rates = AIC3X_RATES,

.formats = AIC3X_FORMATS,},
.capture = {

.stream_name = "Capture",

.channels_min = 2,

.channels_max = 2,

.rates = AIC3X_RATES,

.formats = AIC3X_FORMATS,},
.ops = &aic3x_dai_ops,
.symmetric_rates = 1,

};

Once the codec DAI is connected to a CPU DAI in a DAI link, the DAI link will support only the common
values of channels, rates and formats individually supported by the codec DAI and the CPU DAI.

Other analog codec driver parameters may be configured through DT/OF and may vary from codec to
codec. For further details, see the codec driver documentation located in the Linux kernel device-tree
bindings directory.

5 Configuring Machine Driver
The machine driver implements the system level settings such as the digital audio interface links definition
and configuration, setup power supplies and clocks. It can also declare machine-level DAPM widgets and
connect them with codec widgets. Digital Audio Power Management (DAPM) is out of the scope of this
document.

5.1 Digital Audio Interface Links
The sound card can be composed of one or multiple DAI links. Each DAI link connects the CPU side with
the codec side.

Figure 1. McASP-Based DAI Links in DRA7xx

All DAI links in the sound card are declared as elements in a struct snd_soc_dai_link array.
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The DAI link array shown below was taken from the dra7evm primary sound card. It shows the declaration
of a single link, which connects McASP3 with tlv320aic3106 codec using DSP_B protocol. This link is
similar to the DAI link 1 in Figure 1.
static struct snd_soc_dai_link dra7xx_evm_link = {

.name = "TLV320AIC3X",

.stream_name = "AIC3X",

.codec_dai_name = "tlv320aic3x-hifi",

.ops = &dra7xx_ops,

.init = evm_dra7xx_init,

.dai_fmt = SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_CBS_CFS |
SND_SOC_DAIFMT_IB_NF,

};

The DAI link is composed of:
• name/stream_name. The DAI link stream name and the codec DAI name define the PCM device

name.
# cat /proc/asound/pcm
00-00: AIC3X tlv320aic3x-hifi-0 : : playback 1 : capture 1

• codec_dai_name. Name of the codec DAI that this link connects. Codecs may have one or multiple
DAIs. Refer to the codec driver to identify the DAI names.

• codec_name/codec_of_node. Name or DT reference to the analog codec node. Either the
codec_name or the codec_of_node can be provided, but not both.

• platform_name/platform_of_node. Name or DT node reference to the platform node. The
McASP driver registers the platform drivers it supports (sDMA and/or eDMA), so passing a DT
reference to the McASP device node is also a valid option for the platform node.

• cpu_dai_name. Name of the CPU DAI that this link connects. McASP exposes two DAIs: davinci-
mcasp.0 for I2S/TDM and davinci-mcasp.1 for DIT/SPDIF.

• ops. Machine-level PCM operations of the DAI link: startup, hw_params, prepare, trigger, hw_free,
shutdown. For further details on stream life cycle, see the ALSA documentation (located where?).

• init. DAI link initialization. Typically used to add DAI link specific widgets or other type of one-time
settings.

The DAI link example shown above uses DT/OF nodes for codec and CPU DAI, these fields are populated
dynamically when machine driver parses its own DT parameters.

Fully described DAI links are registered during machine driver probe() when the sound card is registered
through snd_soc_register_card(). ASoC binds the DAI link components during sound card
registration, that is, it associates the appropriate codec, CPU DAI and platform drivers needed for each
link. A new PCM device is created for each successfully probed DAI link.

The DAI link 2 in Figure 1 shows the connection between one McASP interface and three analog codecs
(Codec B through D). This DAI multi-codec configuration can be achieved using the TDM protocol. The
CPU side of the DAI link has a single component (McASP6 in this example), therefore, it generates a
single PCM device once the DAI link is bound by ASoC. The DAI link 2 uses the "multi-codec" add-on
feature which was developed by TI and can be found only in kernels 3.8 and 3.14.
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5.2 Data Format and Clocking
DAI link data format is configured during startup() or hw_params() operations. hw_params() offers the
advantage of receiving stream parameters (channel count, format, sample rate, and so forth).

The data format configuration should be consistent between CPU DAI and the analog codec. McASP
supports the following configuration parameters:
• Format. Configured through snd_soc_dai_set_fmt():

– Clock master/slave
• SND_SOC_DAIFMT_CBM_CFM. McASP is slave for bit clock and frame sync
• SND_SOC_DAIFMT_CBS_CFS. McASP is master for bit clock and frame sync
• SND_SOC_DAIFMT_CBM_CFS. McASP is slave for bit clock and master for frame sync

– Audio format
• SND_SOC_DAIFMT_DSP_A. Frame sync is one bit-clock wide, 1-bit delay
• SND_SOC_DAIFMT_DSP_B. Frame sync is one bit-clock wide, 0-bit delay. This format can be

used for TDM protocol
• SND_SOC_DAIFMT_I2S. Frame sync is one audio word wide, 1-bit delay

– Signal inversion
• SND_SOC_DAIFMT_NB_NF. Normal bit clock, normal frame sync.

• McASP transmitter shifts data out on the falling edge of bit clock, receiver samples data on
the rising edge

• McASP frame sync generator starts the frame on the rising edge of frame sync
• This parameter is recommended for I2S on McASP side

• SND_SOC_DAIFMT_NB_IF. Normal bit clock, inverted frame sync
• McASP transmitter shifts data out on the falling edge of bit clock, receiver samples data on

the rising edge
• McASP frame sync generator starts the frame on the falling edge of frame sync

• SND_SOC_DAIFMT_IB_NF. Inverted bit clock, normal frame sync
• McASP transmitter shifts data out on the rising edge of bit clock, receiver samples data on

the falling edge
• McASP frame sync generator starts the frame on the rising edge of frame sync
• McASP frame sync generator starts the frame on the rising edge of frame sync

• SND_SOC_DAIFMT_IB_IF. Inverted bit clock, inverted frame sync
• McASP transmitter shifts data out on the rising edge of bit clock, receiver samples data on

the falling edge
• McASP frame sync generator starts the frame on falling edge of frame sync
• This configuration can be used for PCM mode (bluetooth, modem)

• Clock source. Configured through snd_soc_dai_set_sysclk():
– Direction

• SND_SOC_CLOCK_IN. McASP high-frequency clock is received externally from
AHCLKX/AHCLKR. This clock is external to McASP but is still internal to DRA7xx. The
AHCLKX/AHCLKR external clocks are mapped to the PRCM MCSPIi_AHCLKX/AHCLKR
clocks.

• SND_SOC_CLOCK_OUT. McASP high-frequency clock is generated internally. The
AHCLKX/AHCLKR internal clocks are mapped to the MCASP_AHCLKX/MCASP_AHCLKR pins.

• Other parameters to snd_soc_dai_set_sysclk() are ignored by McASP driver
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• Clock divider. Configured through snd_soc_dai_set_clkdiv():
– Clock id

• 0: Transmit/receive high-frequency clock dividers. High-frequency clock is sourced from
AUXCLK which is tied to MCASPi_AUX_GFCLK

• 1: Transmit/receive bit clock dividers. These dividers are active if bit clock is sourced internally
as in SND_SOC_DAIFMT_CBS_CFS.

• 2: BCLK-to-FSYNC ratio. This ratio must be set when the bit clock rate is higher than the
minimum BCLK:

Min BCLK = SampleRate * Channels * BitsPerSample (3)
For example, for 44.1 kHz, 16-bits stereo audio, the min BCLK is 1.4112 MHz. That is, one
FSYNC period has 32 BCLKs. The BCLK-to-FSYNC ratio can be set to 32, but it is optional in
this case.
If the BCLK were instead 2.8224 MHz, then one FSYNC period has 64 BCLKs. The BCLK-to-
FSYNC ratio must be set to 64.
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5.3 Example: McASP3 in I2S Mode
This example shows the McASP3 configuration required to interface it with an analog codec in I2S mode
(SND_SOC_DAIFMT_I2S). McASP3 is master (SND_SOC_DAIFMT_CBS_CFS).

McASP3 clock is sourced externally through AHCLKX pin (snd_soc_dai_set_sysclk()) and divided
internally (snd_soc_dai_set_clkdiv()) to produce bit clock frequency shown in Equation 4.
BCLK = 2 * SampleRate * BitsPerSample (4)
static int dra7_snd_media_hw_params(struct snd_pcm_substream *substream,

struct snd_pcm_hw_params *params)
{

struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct snd_soc_card *card = rtd->card;
struct dra7_snd_data *card_data = snd_soc_card_get_drvdata(card);
unsigned int bclk_freq;
int ret;

bclk_freq = dra7_get_bclk(params, card_data->media_slots);

/* McASP driver requires inverted frame for I2S */
ret = snd_soc_dai_set_fmt(cpu_dai, SND_SOC_DAIFMT_I2S |

SND_SOC_DAIFMT_CBS_CFS |
SND_SOC_DAIFMT_NB_NF);

if (ret < 0) {
dev_err(card->dev, "can't set CPU DAI format %d\n", ret);
return ret;

}

/* Set McASP BCLK divider (clkid = 1) */
ret = snd_soc_dai_set_clkdiv(cpu_dai, 1,

card_data->media_mclk_freq / bclk_freq);
if (ret < 0) {

dev_err(card->dev, "can't set CPU DAI clock divider %d\n", ret);
return ret;

}

/* Set McASP sysclk from AHCLKX sourced from ATL */
ret = snd_soc_dai_set_sysclk(cpu_dai, 0,

card_data->media_mclk_freq,
SND_SOC_CLOCK_IN);

if (ret < 0) {
dev_err(card->dev, "can't set CPU DAI sysclk %d\n", ret);
return ret;

}

...

return ret;
}
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