User's Guide **Powering DRA821 with TPS6594-Q1 and LP8764-Q1**

ABSTRACT

This user's guide can be used as a guide for integrating the TPS6594-Q1 and LP8764-Q1 power management integrated circuits (PMICs) into a system powering the DRA821 processor.

Table of Contents

1 Introduction	2
2 Device Versions	2
3 Processor Connections	
4 Supporting Functional Safety Systems	9
4.1 Achieving ASIL-B System Requirements	9
4.2 Achieving up to ASIL-D System Requirements	10
5 Static NVM Settings	10
5.1 Application-Based Configuration Settings	10
5.2 Device Identification Settings	11
5.3 BUCK Settings	
5.4 LDO Settings	13
5.5 VCCA Settings	
5.6 GPIO Settings	
5.7 Finite State Machine (FSM) Settings	
5.8 Interrupt Settings	
5.9 POWERGOOD Settings	
5.10 Miscellaneous Settings	
5.11 Interface Settings	
5.12 Multi-Device Settings	
5.13 Watchdog Settings	
6 Pre-Configurable Finite State Machine (PFSM) Settings	
6.1 Configured States	
6.2 State Transitions	
6.3 Power Sequences	
7 Additional Resources	43

Trademarks

Jacinto[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

1

1 Introduction

This user's guide defines the power distribution network (PDN) between the TPS6594-Q1 and LP8764-Q1 devices and the DRA821 processor. It describes the platform power resource connections, digital control connections, and PMIC sequencing settings to support the different processor state transitions. The PMIC default non-volatile memory (NVM) settings, internal state transitions, and power sequences are also defined in this document. This user's guide does not provide information about the electrical characteristics, external components, package, or the functionality of the PMICs or processor. For such information and the full register maps, refer to the datasheet for each device. In the event of any inconsistency between the official specification and any user's guide, application report, or other referenced material, the data sheet specification will be the definitive source.

2 Device Versions

There are different versions of the TPS6594-Q1 and LP8764-Q1 devices available with unique NVM settings to support different processor solutions. The unique NVM settings for each PMIC device are optimized per PDN design to support different processors, processing loads, SDRAM types, system functional safety levels, and end product features - such as low power modes, processor interface levels, SD Card, and so forth. The NVM settings can be distinguished using the TI_NVM_ID register. In this user guide, each PMIC device is distinguished by the TI orderable part number, TI_NVM_ID, and TI_NVM_REV values listed in Table 2-1.

PDN USE CASE	Orderable Part Number	Device Mode	TI_NVM_ID ⁽¹⁾	TI_NVM_REV
Up to 4.25 A ⁽²⁾ on the CORE rail	PTPS659414F4RWERQ1	Master	0xF4	0x3
 Up to 4.25 A⁽²⁾ on the CPU rails 	P876441A1RQKRQ1	Slave	0xA1	0x3
• Up to 3.4 A ⁽²⁾ on the SDRAM, with support for				
LPDDR4				
Supports Functional Safety up to ASIL-D level				
• Supports low power modes, including MCU-only,				
GPIO Retention, and DDR Retention states				
 Supports I/O level of 3.3 V or 1.8 V 				
Supports use of SD card				

Table 2-1. TPS6594-Q1 and LP8764-Q1 NVM Settings and Orderable Part Numbers

(1) TPS6594-Q1 is currently on early silicon version 1.0. On this version of silicon, the NVM registers are identified as NVM_ID and NVM_REV.

(2) TI recommends having 15% margin between the maximum expected load current and the maximum current allowed per each PMIC output rail.

3 Processor Connections

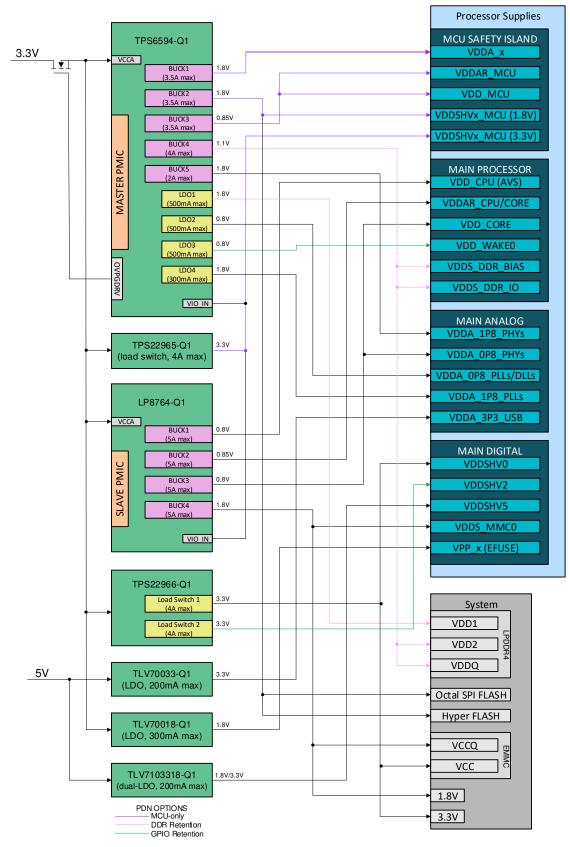

This section details how the TPS6594-Q1 and LP8764-Q1 power resources and GPIO signals are connected to the processor and other peripheral components to support the PDN use case.

Figure 3-1 shows the detailed power mapping between the processor and the TPS6594-Q1 and LP8764-Q1 PMICs. In this configuration, both PMICs use a 3.3 V input voltage. For Functional Safety applications, there is a protection FET before VCCA that connects to the OVPGDRV pin of the master PMIC, allowing voltage monitoring of the input supply to the PMICs.

The VCCA voltage must be the first voltage applied to the PMIC devices. VIO_IN of the PMICs must be supplied after VCCA. In this configuration, VIO_IN is supplied by the load switch that also supplies the VDDSHVx_MCU voltage domain of the processor to allow the digital components of the PMIC devices (such as GPIOs) to remain supplied in MCU-only mode. Additionally, by controlling VIO_IN of both PMICs through this load switch, the system can also reduce power consumption in GPIO Retention or DDR Retention modes, since the load switch is disabled.

This PDN supports the use of either a single dual load switch (TPS22966-Q1) with an AEC-100 Grade 2 (-40 to +105°C) temperature rating or two single load switches (TPS22965-Q1) with an AEC-100 Grade 1 (-40 to +125°C) rating if a higher ambient temperature range is desired. It also includes a few optional discrete power components to support additional system functions that may be needed. The TLV70033-Q1 LDO is used to support compliant USB data eye performance by supplying a low noise 3.3 V for USB 2.0 interface integration. The TLV70018-Q1 LDO is available to support on-board EFUSE programming on high security SoC PNs. Alternative LDOs can be chosen for SD card dual-voltage I/O support (3.3 V and 1.8 V), TLV7103318-Q1 dual-voltage LDO can be used to enable compliant, dual voltage, high-speed SD card operations. If these system functions are not required, the power connection can be removed and the processor voltage domains will need to be grouped into alternative power rails.

The power resource assignments shown in Figure 3-1 enable the support for different processor low-power modes, including MCU-only mode, GPIO Retention, and DDR Retention. Please use Table 3-1 as a guide to

understand which power resources are required to support different system features. If the system feature listed is not required, the power resource connection can be removed and the processor voltage domains will need to be grouped into alternative power rails.

Device	PMIC	Processor Domains		Powe	er States	
Device	Resource	Processor Domains	Active SoC	MCU - only	GPIO Retention	DDR Retention
	BUCK1	VDDA_x	Required	Required		
	BUCK2	VDDSHVx_MCU (1.8V)	Required	Required		
	BUCK3	VDD_MCU, VDDAR_MCU	Required	Required		
	BUCK4	VDDS_DDR_BIAS, VDDS_DDR_IO	Required			Required
TPS6594-Q1	BUCK5	VDDA_1P8_PHYs	Required			
	LDO1	N/A	Required			Required
	LDO2	VDDA_0P8_PLLs/DLLs	Required			
	LDO3	VDD_WAKE0	Required		Required	
	LDO4	VDDA_1P8_PLLs	Required			
	BUCK1	VDD_CPU	Required			
	BUCK2	VDDAR_CPU/CORE	Required			
LP8764-Q1	BUCK3 VDD_CORE, VDDA_0P8_PHYs		Required			
	BUCK4	VDDS_MMC0	Required			
TPS22965-Q1	Load Switch	VDDSHVx_MCU (3.3 V)	Required	Required		
TPS22966-Q1	Load Switch 1	VDDSHV0 ⁽¹⁾	Required			
11'322900-Q1	Load Switch 2	VDDSHV2			Required	

(1) VDDSHV5 can also be powered by this rail if an SD card is not required in the system.

Figure 3-2 shows the digital control signal mapping between the processor and the PMIC devices. For the two PMIC devices to work together, the master PMIC and slave PMIC must establish an SPMI communication channel. This allows the TPS6594-Q1 and LP8764-Q1 to synchronize their internal Pre-Configurable State Machines (PFSM) so that they operate as one PFSM across all power and digital resources. The GPIO_5 and GPIO_6 pins on the TPS6594-Q1 and GPIO_8 and GPIO_9 pins on LP8764-Q1 are assigned for this functionality. In addition, the master PMIC's LDOVINT pin must be connected to the slave PMIC's ENABLE input (GPIO_4 of LP8764-Q1) to correctly initiate the PFSM.

Other digital connections from the TPS6594-Q1 devices to the processor allow support for error monitoring, processor reset, processor wake up, and system low-power modes. Specific GPIO pins have been assigned to key signals in order to ensure proper operation during low power modes when only a few GPIO pins will remain operational.

To support DDR retention low power mode, the following PMIC GPIO functions are required:

- 1. GPIO_2 and GPIO_3 of LP8764-Q1 connected to an external, low voltage latch to create a sustained control signal to DDR_RET of the processor. This is needed since the PMIC VIO_IN power rail supplying GPIO_2 and 3 will be disabled during DDR Retention state.
- 2. Sustained GPIO_3 of TPS6594-Q1 connected to in-line load switch's enable input to control MCU's 3.3 V domain.
- 3. Sustained GPIO_4 of TPS6594-Q1 with NVM default function set as LP_WKUP1 and mask bit set high to avoid false triggering until CAN wakeup signal is armed. SW must properly arm CAN PHY so that wakeup signal is set low and unmask GPIO_4 before entering DDR Retention state.

Both GPIO_3 and GPIO_4 of TPS6594-Q1 are powered by the VINT internal voltage domain of the PMIC. VINT remains powered in low power modes to keep these GPIOs sustained.

To support GPIO retention low power mode, the following PMIC GPIO functions are required:

1. Sustained GPIO_7 of LP8764-Q1 connected to in-line load switch's enable input to control processor's 3.3 V GPIO retention domain.

Additional digital options also include GPIO_10 of TPS6594-Q1, which can be configured by software as a 32 kHz clock output for the processor's oscillator input (LFOSC). There is also the option to disable the watchdog timer using hardware, by pulling GPIO_8 of TPS6594-Q1 high. Lastly, the LP8764-Q1's GPIO_1 is included in the power up sequence to enable external regulators, for options such as DDR I/O.

Figure 3-2. TPS6594-Q1 and LP8764-Q1 Digital Connections

The digital connections shown in Figure 3-2 allow system features including MCU-only mode, GPIO retention mode, DDR retention mode, and functional safety systems capable of supporting up to ASIL-D. Please use Table

7

3-2 as a guide to understand GPIO assignments required for these features. If the feature listed is not required, the digital connection can be removed. For details on how functional safety related connections help achieve functional safety system-level goals, see Section 4.

	PMIC Digital			S	ystem Feature	s	
Device	Signal	System Digital Signal	Active SoC	Funtional Safety	MCU - only	GPIO Retention	DDR Retention
	nPWRON/ ENABLE	System ON Request	Required				
	INT ⁽¹⁾	Safety MCU GPIO		Required			
	nRSTOUT ⁽¹⁾	MCU_PORz	Required		Required		
	SCL_I2C1	WKUP_I2C0_SCL	Required				
	SDA_I2C1	WKUP_I2C0_SDA	Required				
	GPIO_1	MCU_I2C0_SCL		Required			
	GPIO_2	MCU_I2C0_SCL		Required			
TPS6594-Q1	GPIO_3	Enable MCU I/O	Required				
	GPIO_4 ⁽²⁾	CAN Wakeup				Required	Required
	GPIO_5	PMIC SPMI CLK	Required				
	GPIO_6	PMIC SPMI DATA	Required				
	GPIO_7	MCU_SAFETY_ERRORn		Required			
	GPIO_8 ⁽⁶⁾	Disable Watchdog	(3)	(3)			
	GPIO_9	Ground ⁽⁴⁾	Required				
	GPIO_10 ⁽⁵⁾	WKUP_LFOSC0	Required				
	GPIO_11 ⁽¹⁾	PORz		Required	Required		
	INT ⁽¹⁾	Safety MCU GPIO		Required			
	SCL_I2C1	WKUP_I2C0_SCL	Required				
	SDA_I2C1	WKUP_I2C0_SDA	Required				
	GPIO_1	Enable DDR I/O (Optional)					
	GPIO_2 ⁽⁶⁾	External Latch Data Input					Required
	GPIO_3 ⁽⁶⁾	External Latch Clock Input					Required
LP8764-Q1	GPIO_4	TPS6594-Q1 LDOVINT	Required				
	GPIO_5 ⁽⁶⁾	Enable EFUSE					
	GPIO_6 ⁽⁶⁾	N/A					
	GPIO_7	Enable DDR Retention				Required	
	GPIO_8	PMIC SPMI CLK	Required				
	GPIO_9	PMIC SPMI DATA	Required				
	GPIO_10	Enable Main I/O			Required	Required	Required

Table 3-2. Digital Connections by System Feature

(1) This pin is open-drain to enable voltage translation to correct voltage level for processor interface.

(2) Software must unmask GPIO_4 before the system expects to trigger a wakeup on this pin.

(3) If it is desired to disable the watchdog through hardware, GPIO_8 is required and must be set high by the time nRSTOUT goes high.

After nRSTOUT is high, the watchdog state is latched and the pin can be configured for other functions through software.

(4) The GPIO_9 must be grounded when using 1.0 silicon of TPS6594-Q1.

(5) GPIO_10 is set as a general purpose input (GPI) by default to allow processor to boot up before sourcing the 32 kHz to the processor, since both bootmode and low frequency clock inputs to the processor utilize the same pin.

(6) This GPIO is not required for power sequencing or PMIC functionality and can be configured by software for a different purpose if desired.

4 Supporting Functional Safety Systems

By using the TPS6594-Q1 and LP8764-Q1 solution to power the DRA821 processor, the system can leverage the following PMIC functional safety features:

- Independent Power Control of MCU and Main Rails
- Independent Monitoring and Reset for MCU and Main Rails
- Input Supply Monitoring
- Output Voltage and Current Monitoring
- Question & Answer Watchdog
- Fault Reporting Interrupts
- Enable Drive Pin that provides an independent path to disable system actuators
- Error Pin Monitoring
- Internal Diagnostics including voltage monitoring, temperature monitoring, and Built-In Self-Test

Refer to the Safety Manuals of the TPS6594-Q1 and LP8764-Q1 devices for full descriptions and analysis of the PMIC functional safety features. These functional safety features can assist in achieving up to ASIL-D rating for a system. Additionally, these features help in achieving the functional safety assumptions utilized by the processor to achieve up to ASIL-D rating. See the DRA821 Safety Manual for Jacinto[™] 7 Processors for a complete list of functional safety system assumptions.

4.1 Achieving ASIL-B System Requirements

To achieve a system functional safety level of ASIL-B, the following PDN features are available:

- · PMIC over voltage and under voltage monitoring on the output power rails
- PMIC over-voltage monitoring and protection on the input to the PMIC (VCCA)
- · Watchdog monitoring of safety processor
- MCU error monitoring
- MCU reset
- I2C communication
- Error indicator for driving external circuitry (optional)

The PDN has an in-line, external power FET between the input supply and PMICs. This FET can quickly isolate the PMICs when an over-voltage event greater than 6 V is detected on the input supply to protect the system from being damaged, as shown in Figure 3-1. Note that any power rail connected after the FET can be protected from an over voltage event. Any power connected upstream from the FET is not protected from over voltage events. In Figure 3-1 the load switches that supply power to the MCU and Main I/O domains and the discrete buck supplying the DDR are all connected after the FET to extend the over voltage protection to these processor domains and discrete power resoures.

The PMIC internal over voltage and under voltage monitoring and their respective monitoring threshold levels can be enabled through I2C after startup. To monitor the load switch voltage that supplies the MCU I/O of the processor, it is recommended to use the processor's POK monitor built into the VDDSHV0_MCU voltage domain.

The PMIC's Internal Q&A Watchdog is enabled by default on the TPS6594-Q1 device. Once the device is in ACTIVE state, the trigger or Q&A watchdog settings can be configured through the secondary I2C in the device. The steps for configuring the watchdog settings can be found in the TPS6594-Q1 datasheet. Setting the DISABLE_WDOG signal high on TPS6594-Q1 GPIO_8 will disable the watchdog timer if this feature needs to be suspended or is not required in the system.

GPIO_7 of the TPS6594-Q1 PMIC is configured as the MCU error signal monitoring, but will need to be enabled though the ESM_MCU_EN register bit. MCU reset is supported through the connection between the master PMIC nRSTOUT pin and the MCU_PORz of the processor. Lastly, there are 2 I2C ports between the TPS6594-Q1 and the processor which allows the watchdog monitoring to be on an independent communication channel.

There is an option to use the TPS6594-Q1 PMIC's EN_DRV to indicate an error has been detected and the system is entering SAFE state. This signal can be utilized if the system has some additional external circuitry that needs to be driven by an error event. In this PDN, the EN_DRV is not utilized, but available if needed.

9

4.2 Achieving up to ASIL-D System Requirements

For ASIL-C or ASIL-D systems, there are additional features to the ones described in Section 4.1 that can be utilized. These features include:

- PMIC current monitoring on all output power rails
- Isolation of the MCU and Main power domains of the processor
- SoC reset

The current monitoring is enabled by default for all BUCKs and LDOs for the TPS6594-Q1 and LP8764-Q1 devices. Additionally, Figure 3-1 shows that the MCU domain of the processor is powered by different power resources of the PMICs than the main power domain of the processor. SoC reset functionality is supported through the connection of GPIO_11 on TPS6594-Q1, configured as nRSTOUT_SoC, to the PORz pin of the processor.

Note

Residual voltage checking is available on the PMICs to prevent startup when output rails are not discharged below 100 mV as may happen under a fault condition. However, this feature is not enabled in the NVM settings of this PDN to support repetitive power cycling during system software development.

5 Static NVM Settings

The TPS6594-Q1 and LP8764-Q1 devices consist of fixed registers and configurable registers that are loaded from the NVM. For all NVM registers, the initial NVM settings that load into the registers are provided in this section. Note that these initial NVM settings can be changed during state transitions, such as moving from STANDBY to ACTIVE mode. The full register map, including default values of fixed registers, is located in the corresponding PMIC datasheet. Empty values indicate that the device does not have the register included. For example, LP8764-Q1 does not have BUCK5 registers at all and therefore the values for it are empty.

5.1 Application-Based Configuration Settings

In the LP8764-Q1 and TPS6594-Q1 datasheet, there are multiple application-based configurations for each BUCK to operate within. Table 5-1 includes the different configurations available:

TPS6594-Q1	LP8764-Q1
2.2 MHz Single Phase for DDR Termination	2.2 MHz Single Phase for DDR Termination
4.4 MHz Multiphase Configuration	4.4 MHz Multiphase Configuration
4.4 MHz Single Phase Low Output Voltage	4.4 MHz Single Phase Low Current
4.4 MHz Single Phase High Output Voltage	4.4 MHz Single Phase High Voltage
2.2 MHz Multiphase with Full Range VIN	2.2 MHz Multiphase with Full Range VIN
2.2 MHz Single Phase with 5.0 V VIN	2.2 MHz Single Phase with 5.0 V VIN
2.2 MHz Single Phase with Full Range VIN	2.2 MHz Single Phase with Full Range VIN
	8.8 MHz Single Phase

Table 5-1. LP8764-Q1 and TPS6594-Q1 Use Cases

The seven configurations also have optimal output inductance values that optimize the performance of each buck under these various conditions. Table 5-2 shows the default configurations for the BUCKs. These settings cannot be changed after device startup.

Table 5-2. Application Use Case Settings							
Device	BUCK Rail	Default Application Use Case	Recommended Inductor Value				
	BUCK1	4.4 MHz Multi-phase with Full Range VIN	220 nH				
	BUCK2	4.4 MHz Multi-phase with Full Range VIN	220 nH				
TPS6594-Q1	BUCK3	4.4 MHz Multi-phase with Full Range VIN	220 nH				
	BUCK4	4.4 MHz Multi-phase with Full Range VIN	220 nH				
	BUCK5	4.4 MHz Multi-phase with Full Range VIN	220 nH				
	BUCK1	4.4 MHz Multi-phase with Full Range VIN	220 nH				
LP8764-Q1	BUCK2	4.4 MHz Multi-phase with Full Range VIN	220 nH				
LF0/04-Q1	BUCK3	4.4 MHz Multi-phase with Full Range VIN	220 nH				
	BUCK4	4.4 MHz Multi-phase with Full Range VIN	220 nH				

Table 5-2. Application Use Case Settings

5.2 Device Identification Settings

These settings are used to distinguish which device is detected in a system. These settings cannot be changed after device startup.

Tuble e e. Bevice facilitation frem eetings					
De vieten News	Field Name	TPS6594-Q1		LP8764-Q1	
Register Name		Value	Description	Value	Description
DEV_REV	SILICON_VERSION / SILICON_REV				
	DEVICE_ID	0x0	0x0	0x7	0x7
NVM_CODE_1	TI_NVM_ID	0xf4	0xf4	0xa1	0xa1
NVM_CODE_2	TI_NVM_REV	0x4	0x4	0x4	0x4
PHASE_CONFIG	MP_CONFIG	0x1	1+1+1+1	0x1	1+1+1+1

Table 5-3. Device Identification NVM Settings

5.3 BUCK Settings

These settings detail the default voltages, configurations, and monitoring of the BUCK rails. All these settings can be changed though I²C after startup.

Begieter Neme	Field Name	TPS6594	TPS6594-Q1		LP8764-Q1		
Register Name	Field Name	Value	Description	Value	Description		
BUCK1_CTRL	BUCK1_EN ⁽¹⁾	0x0	BUCK regulator is disabled	0x0	BUCK regulator is disabled.		
	BUCK1_FPWM	0x1	Forced to PWM operation.	0x1	Forced to PWM operation.		
	BUCK1_FPWM_MP	0x0	Automatic phase adding and shedding.	0x0	Automatic phase adding and shedding.		
	BUCK1_VMON_EN	0x0	OV and UV comparators are disabled	0x0	OV, UV, SC and ILIM comparators are disabled.		
	BUCK1_VSEL	0x0	BUCK1_VOUT_1	0x0	BUCK1_VOUT_1		
	BUCK1_PLDN	0x1	Pull-down resistor enabled	0x1	Pull-down resistor is enabled.		
	BUCK1_RV_SEL	0x0	Disabled	0x0	Disabled		
BUCK1_CONF	BUCK1_SLEW_RATE	0x3	5.0 mV/µs	0x3	5.0 mV/µs		
	BUCK1_ILIM	0x5	5.5 A	0x5	5.5 A		
BUCK2_CTRL	BUCK2_EN ⁽¹⁾	0x0	BUCK regulator is disabled	0x0	BUCK regulator is disabled.		
	BUCK2_FPWM	0x1	Forced to PWM operation.	0x1	Forced to PWM operation.		
	BUCK2_VMON_EN	0x0	OV and UV comparators are disabled	0x0	OV, UV, SC, and ILIM comparators are disabled.		
	BUCK2_VSEL	0x0	BUCK2_VOUT_1	0x0	BUCK2_VOUT_1		
	BUCK2_PLDN	0x1	Pull-down resistor enabled	0x1	Pull-down resistor is enabled.		
	BUCK2_RV_SEL	0x0	Disabled	0x0	Disabled		
BUCK2_CONF	BUCK2_SLEW_RATE	0x3	5.0 mV/µs	0x3	5.0 mV/µs		
	BUCK2_ILIM	0x5	5.5 A	0x5	5.5 A		
BUCK3_CTRL	BUCK3_EN ⁽¹⁾	0x0	BUCK regulator is disabled	0x0	BUCK regulator is disabled.		
	BUCK3_FPWM	0x1	Forced to PWM operation.	0x1	Forced to PWM operation.		
	BUCK3_FPWM_MP	0x0	Automatic phase adding and shedding.	0x0	Automatic phase adding and shedding.		
	BUCK3_VMON_EN	0x0	OV and UV comparators are disabled	0x0	OV, UV, SC, and ILIM comparators are disabled.		
	BUCK3_VSEL	0x0	BUCK3_VOUT_1	0x0	BUCK3_VOUT_1		
	BUCK3_PLDN	0x1	Pull-down resistor enabled	0x1	Pull-down resistor is enabled.		
	BUCK3_RV_SEL	0x0	Disabled	0x0	Disabled		
BUCK3_CONF	BUCK3_SLEW_RATE	0x3	5.0 mV/µs	0x3	5.0 mV/µs		
	BUCK3_ILIM	0x5	5.5 A	0x5	5.5 A		
BUCK4_CTRL	BUCK4_EN ⁽¹⁾	0x0	BUCK regulator is disabled	0x0	BUCK regulator is disabled.		
	BUCK4_FPWM	0x1	Forced to PWM operation.	0x1	Forced to PWM operation.		
	BUCK4_VMON_EN	0x0	OV and UV comparators are disabled	0x0	OV, UV, SC, and ILIM comparators are disabled.		
	BUCK4_VSEL	0x0	BUCK4_VOUT_1	0x0	BUCK4_VOUT_1		
	BUCK4_PLDN	0x1	Pull-down resistor enabled	0x1	Pull-down resistor is enabled.		
	BUCK4_RV_SEL	0x0	Disabled	0x0	Disabled		
BUCK4_CONF	BUCK4_SLEW_RATE	0x3	5.0 mV/µs	0x3	5.0 mV/µs		
	BUCK4_ILIM	0x5	5.5 A	0x5	5.5 A		
BUCK5_CTRL	BUCK5_EN ⁽¹⁾	0x0	BUCK regulator is disabled.				
	BUCK5_FPWM	0x1	Forced to PWM operation.				
	BUCK5_VMON_EN	0x0	OV and UV comparators are disabled.				
	BUCK5_VSEL	0x0	BUCK5_VOUT_1				
	BUCK5_PLDN	0x1	Pull-down resistor enabled.				
	BUCK5_RV_SEL	0x0	Disabled				

Table 5-4. BUCK NVM Settings

Deviator Name	Field Name	TPS6594	-Q1	LP8764-0	21
Register Name	Field Name	Value	Description	Value	Description
BUCK5_CONF	BUCK5_SLEW_RATE	0x3	5.0 mV/µs		
	BUCK5_ILIM	0x3	3.5 A		
BUCK1_VOUT_1	BUCK1_VSET1	0xb2	1.80 V	0x37	0.800 V
BUCK1_VOUT_2	BUCK1_VSET2	0x0	0.3 V	0x0	0.3 V
BUCK2_VOUT_1	BUCK2_VSET1	0xb2	1.80 V	0x41	0.850 V
BUCK2_VOUT_2	BUCK2_VSET2	0x0	0.3 V	0x0	0.3 V
BUCK3_VOUT_1	BUCK3_VSET1	0x41	0.850 V	0x37	0.800 V
BUCK3_VOUT_2	BUCK3_VSET2	0x0	0.3 V	0x0	0.3 V
BUCK4_VOUT_1	BUCK4_VSET1	0x73	1.10 V	0xb2	1.80 V
BUCK4_VOUT_2	BUCK4_VSET2	0x0	0.3 V	0x0	0.3 V
BUCK5_VOUT_1	BUCK5_VSET1	0xb2	1.80 V		
BUCK5_VOUT_2	BUCK5_VSET2	0x0	0.3 V		
BUCK1_PG_WINDOW	BUCK1_OV_THR	0x2	+4% / +40 mV	0x2	+4% / +40 mV
	BUCK1_UV_THR	0x2	-4% / -40 mV	0x2	-4% / -40 mV
BUCK2_PG_WINDOW	BUCK2_OV_THR	0x2	+4% / +40 mV	0x2	+4% / +40 mV
	BUCK2_UV_THR	0x2	-4% / -40 mV	0x2	-4% / -40 mV
BUCK3_PG_WINDOW	BUCK3_OV_THR	0x2	+4% / +40 mV	0x2	+4% / +40 mV
	BUCK3_UV_THR	0x2	-4% / -40 mV	0x2	-4% / -40 mV
BUCK4_PG_WINDOW	BUCK4_OV_THR	0x2	+4% / +40 mV	0x2	+4% / +40 mV
	BUCK4_UV_THR	0x2	-4% / -40 mV	0x2	-4% / -40 mV
BUCK5_PG_WINDOW	BUCK5_OV_THR	0x2	+4% / +40 mV		
	BUCK5_UV_THR	0x2	-4% / -40 mV		
VMON1_PG_WINDOW	VMON1_RANGE			0x0	0.3 - 3.34 V
	VMON1_UV_THR			0x0	-3% / -30 mV / (-150 mV)
	VMON1_OV_THR			0x0	+3% / +30 mV / (+150 mV)
VMON1_PG_LEVEL	VMON1_PG_SET			0x0	0x0
VMON2_PG_WINDOW	VMON2_RANGE			0x0	0.3 - 3.34 V
	VMON2_UV_THR			0x0	-3% / -30 mV / (-150 mV)
	VMON2_OV_THR			0x0	+3% / +30mV / (+150 mV)

Table 5-4. BUCK NVM Settings (continued)

(1) Note that this NVM default value can change when the device transitions to ACTIVE mode.

5.4 LDO Settings

These settings detail the default voltages, configurations, and monitoring of the LDO rails. All these settings can be changed though I²C after startup. Note that only TPS6594-Q1 device contains LDO outputs.

Register Name	Field Name	TPS6594-Q1	TPS6594-Q1			
Register Name	rieiu Nailie	Value	Description			
LDO1_CTRL	LDO1_EN ⁽¹⁾	0x0	LDO1 regulator is disabled.			
	LDO1_PLDN	0x2	250 Ω			
	LDO1_VMON_EN	0x0	OV and UV comparators are disabled.			
	LDO1_RV_SEL	0x0	Disabled			
LDO2_CTRL	LDO2_EN ⁽¹⁾	0x0	LDO2 regulator is disabled.			
	LDO2_PLDN	0x1	125 Ω			
	LDO2_VMON_EN	0x0	OV and UV comparators are disabled.			
	LDO2_RV_SEL	0x0	Disabled			

Table 5-5. LDO NVM Settings

Register Name	Field Name	TPS6594-Q1			
Register Name	Field Name	Value	Description		
LDO3_CTRL	LDO3_EN ⁽¹⁾	0x0	LDO3 regulator is disabled.		
	LDO3_PLDN	0x1	125 Ω		
	LDO3_VMON_EN	0x0	OV and UV comparators are disabled.		
	LDO3_RV_SEL	0x0	Disabled		
LDO4_CTRL	LDO4_EN ⁽¹⁾	0x0	LDO4 regulator is disabled.		
	LDO4_PLDN	0x1	125 Ω		
	LDO4_VMON_EN	0x0	OV and UV comparators are disabled.		
	LDO4_RV_SEL	0x0	Disabled		
LDOINT_CTRL	LDOINT_VMON_EN	0x1	OV and UV comparators are enabled.		
LDORTC_CTRL	LDORTC_VMON_EN	0x1	OV and UV comparators are enabled.		
LDO1_VOUT	LDO1_VSET	0x1c	1.80 V		
	LDO1_BYPASS	0x0	LDO is set to linear regulator mode.		
LDO2_VOUT	LDO2_VSET	0x8	0.80 V		
	LDO2_BYPASS	0x0	LDO is set to linear regulator mode.		
LDO3_VOUT	LDO3_VSET	0x8	0.80 V		
	LDO3_BYPASS	0x0	LDO is set to linear regulator mode.		
LDO4_VOUT	LDO4_VSET	0x38	1.800 V		
LDO1_PG_WINDOW	LDO1_OV_THR	0x2	+4% / +40 mV		
	LDO1_UV_THR	0x2	-4% / -40 mV		
LDO2_PG_WINDOW	LDO2_OV_THR	0x2	+4% / +40 mV		
	LDO2_UV_THR	0x2	-4% / -40 mV		
LDO3_PG_WINDOW	LDO3_OV_THR	0x2	+4% / +40 mV		
	LDO3_UV_THR	0x2	-4% / -40 mV		
LDO4_PG_WINDOW	LDO4_OV_THR	0x2	+4% / +40 mV		
	LDO4_UV_THR	0x2	-4% / -40 mV		

Table 5-5. LDO NVM Settings (continued)

(1) Note that this NVM default value can change when the device transitions to ACTIVE mode.

5.5 VCCA Settings

These settings detail the default monitoring enabled on VCCA. All these settings can be changed though I²C after startup.

Pagiatar Nama	Field Name		21	LP8764-Q1	
Register Name		Value	Description	Value	Description
VCCA_VMON_CTRL	VMON_DEGLITCH_SE			0x0	4 µs
	VMON2_RV_SEL			0x0	Disabled
	VMON2_EN			0x0	OV and UV comparators are disabled.
	VMON1_RV_SEL			0x0	Disabled
	VMON1_EN			0x0	OV and UV comparators are disabled.
	VCCA_VMON_EN	0x1	OV and UV comparators are enabled.	0x1	OV and UV comparators are enabled.
VCCA_PG_WINDOW	VCCA_OV_THR	0x7	+10%	0x7	+10%
	VCCA_UV_THR	0x7	-10%	0x7	-10%
	VCCA_PG_SET	0x0	3.3 V	0x0	3.3 V

Table 5-6. VCCA NVM Settings

5.6 GPIO Settings

These settings detail the default configurations of the GPIO rails. All these settings can be changed though I²C after startup. Note that the contents of the GPIOx_SEL field determine which other fields in the GPIOx_CONF and GPIO_OUT_x registers are applicable. To understand which NVM fields apply to each GPIOx_SEL option, see the *Digital Signal Descriptions* section in TPS6594-Q1 and LP8764-Q1 data sheets.

		Table 5-7. GPIO NVM Settings				
Register Name	Field Name	TPS6594	-Q1	LP8764-Q1		
		Value	Description	Value	Description	
GPIO1_CONF	GPIO1_OD	0x0	Push-pull output	0x0	Push-pull output	
	GPIO1_DIR	0x0	Input	0x1	Output	
	GPIO1_SEL	0x1	SCL_I2C2/CS_SPI	0x0	GPIO1	
	GPIO1_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.	
	GPIO1_PU_PD_EN	0x0	Pull-up or pull-down resistor is disabled.	0x0	Pull-up or pull-down resistor is disabled.	
	GPIO1_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.	
GPIO2_CONF	GPIO2_OD	0x0	Push-pull output	0x0	Push-pull output	
	GPIO2_DIR	0x0	Input	0x1	Output	
	GPIO2_SEL	0x2	SDA_I2C2/SDO_SPI	0x0	GPIO2	
	GPIO2_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.	
	GPIO2_PU_PD_EN	0x0	Pull-up or pull-down resistor is disabled.	0x0	Pull-up or pull-down resistor is disabled.	
	GPIO2_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.	
GPIO3_CONF	GPIO3_OD	0x0	Push-pull output	0x0	Push-pull output	
	GPIO3_DIR	0x1	Output	0x1	Output	
	GPIO3_SEL	0x0	GPIO3	0x0	GPIO3	
	GPIO3_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.	
	GPIO3_PU_PD_EN	0x0	Pull-up or pull-down resistor is disabled.	0x0	Pull-up or pull-down resistor is disabled.	
	GPIO3_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.	
GPIO4_CONF	GPIO4_OD	0x0	Push-pull output	0x0	Push-pull output	
	GPIO4_DIR	0x0	Input	0x0	Input	
	GPIO4_SEL	0x6	LP_WKUP1	0x1	ENABLE	
	GPIO4_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.	
	GPIO4_PU_PD_EN	0x1	Pull-up/pull-down resistor enabled	0x1	Pull-up or pull-down resistor is enabled.	
	GPIO4_DEGLITCH_EN	0x1	10 µs deglitch time.	0x1	8 µs deglitch time.	
GPIO5_CONF	GPIO5_OD	0x0	Push-pull output	0x0	Push-pull output	
	GPIO5_DIR	0x0	Input	0x1	Output	
	GPIO5_SEL	0x1	SCLK_SPMI	0x0	GPIO5	
	GPIO5_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.	
	GPIO5_PU_PD_EN	0x0	Pull-up or pull-down resistor is disabled.	0x0	Pull-up or pull-down resistor is disabled.	
	GPIO5_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.	

Table 5-7. GPIO NVM Settings

Table 5-7. GPIO NVM Settings (continued)

	Table 5-7. GPIO NVM Settings (continued)						
Register Name	Field Name	TPS6594-C	•	LP8764-Q1			
-		Value	Description	Value	Description		
GPIO6_CONF	GPIO6_OD	0x0	Push-pull output	0x0	Push-pull output		
	GPIO6_DIR	0x0	Input	0x0	Input		
	GPIO6_SEL	0x1	SDATA_SPMI	0x0	GPIO6		
	GPIO6_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected		
	GPIO6_PU_PD_EN	0x0	Pull-up or pull-down resistor is disabled.	0x1	Pull-up or pull-down resistor is enabled.		
	GPIO6_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x1	8 μs deglitch time.		
GPIO7_CONF	GPIO7_OD	0x0	Push-pull output	0x0	Push-pull output		
	GPIO7_DIR	0x0	Input	0x1	Output		
	GPIO7_SEL	0x1	NERR_MCU	0x0	GPIO7		
	GPIO7_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.		
	GPIO7_PU_PD_EN	0x1	Pull-up or pull-down resistor is enabled.	0x0	Pull-up or pull-down resistor is disabled		
	GPIO7_DEGLITCH_EN	0x1	10 μs deglitch time.	0x0	No deglitch, only synchronization.		
GPIO8_CONF	GPIO8_OD	0x0	Push-pull output	0x0	Push-pull output		
	GPIO8_DIR	0x0	Input	0x0	Input		
	GPIO8_SEL	0x3	DISABLE_WDOG	0x1	SCLK_SPMI		
	GPIO8_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.		
	GPIO8_PU_PD_EN	0x1	Pull-up or pull-down resistor is enabled.	0x1	Pull-up or pull-down resistor is enabled.		
	GPIO8_DEGLITCH_EN	0x1	10 μs deglitch time.	0x0	No deglitch, only synchronization.		
GPIO9_CONF	GPIO9_OD	0x0	Push-pull output	0x0	Push-pull output		
	GPIO9_DIR	0x0	Input	0x0	Input		
	GPIO9_SEL	0x4	NSLEEP1	0x1	SDATA_SPMI		
	GPIO9 PU SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.		
	GPIO9_PU_PD_EN	0x1	Pull-up or pull-down resistor is enabled.	0x1	Pull-up or pull-down resistor is enabled.		
	GPIO9_DEGLITCH_EN	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.		
GPIO10 CONF	GPIO10_OD	0x0	Push-pull output	0x0	Push-pull output		
_	 GPIO10_DIR	0x0	Input	0x1	Output		
	 GPIO10_SEL	0x0	GPIO10	0x0	GPIO10		
	GPIO10_PU_SEL	0x0	Pull-down resistor is selected.	0x0	Pull-down resistor is selected.		
	GPIO10_PU_PD_EN	0x1	Pull-up or pull-down resistor is enabled.	0x0	Pull-up or pull-down resistor is disabled.		
	GPIO10_DEGLITCH_E	0x0	No deglitch, only synchronization.	0x0	No deglitch, only synchronization.		
GPIO11_CONF	GPIO11 OD	0x1	Open-drain output				
	GPIO11_DIR	0x1	Output				
	GPIO11_SEL	0x2	NRSTOUT_SOC				
	GPIO11_PU_SEL	0x0	Pull-down resistor is selected.				
	GPIO11_PU_PD_EN	0x0	Pull-up or pull-down resistor is disabled.				
	GPIO11_DEGLITCH_E N	0x0	No deglitch, only synchronization.				

De siste Alexan	Elected Manage	TPS6594	I-Q1	LP8764-0	Q1
Register Name	Field Name	Value	Description	Value	Description
NPWRON_CONF	NPWRON_SEL	0x0	ENABLE		
	ENABLE_PU_SEL	0x0	Pull-down resistor is selected.		
	ENABLE_PU_PD_EN	0x1	Pull-up ir pull-down resistor is enabled.		
	ENABLE_DEGLITCH_E N	0x1	10 μs deglitch time when ENABLE, 50 ms deglitch time when NPWRON.		
	ENABLE_POL	0x0	Active high	0x0	Active high
	NRSTOUT_OD	0x1	Open-drain output		
GPIO_OUT_1	GPIO1_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO2_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO3_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO4_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO5_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO6_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO7_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO8_OUT ⁽¹⁾	0x0	Low	0x0	Low
GPIO_OUT_2	GPIO9_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO10_OUT ⁽¹⁾	0x0	Low	0x0	Low
	GPIO11_OUT ⁽¹⁾	0x0	Low		

Table 5-7. GPIO NVM Settings (continued)

(1) Note that this NVM default value can change when the device transitions to ACTIVE mode.

5.7 Finite State Machine (FSM) Settings

These settings describe how the PMIC output rails are assigned to various system-level states. Also, the default trigger for each system-level state is described. All these settings can be changed though I²C after startup.

		TPS6594	I-Q1	LP8764-	Q1
Register Name	Field Name	Value	Description	Value	Description
RAIL_SEL_1	BUCK1_GRP_SEL	0x1	MCU rail group	0x2	SOC rail group
	BUCK2_GRP_SEL	0x1	MCU rail group	0x2	SOC rail group
	BUCK3_GRP_SEL	0x1	MCU rail group	0x2	SOC rail group
	BUCK4_GRP_SEL	0x1	MCU rail group	0x2	SOC rail group
RAIL_SEL_2	BUCK5_GRP_SEL	0x2	SOC rail group		
	LDO1_GRP_SEL	0x1	MCU rail group		
	LDO2_GRP_SEL	0x2	SOC rail group		
	LDO3_GRP_SEL	0x1	MCU rail group		
RAIL_SEL_3	VMON2_GRP_SEL			0x0	No group assigned
	VMON1_GRP_SEL			0x0	No group assigned
	LDO4_GRP_SEL	0x2	SOC rail group		
	VCCA_GRP_SEL	0x1	MCU rail group	0x1	MCU rail group
FSM_TRIG_SEL_1	MCU_RAIL_TRIG	0x2	MCU power error	0x2	MCU power error
	SOC_RAIL_TRIG	0x3	SOC power error	0x3	SOC power error
	OTHER_RAIL_TRIG	0x3	SOC power error	0x3	SOC power error
	SEVERE_ERR_TRIG	0x0	Immediate shutdown	0x0	Immediate shutdown
FSM_TRIG_SEL_2	MODERATE_ERR_TRI G	0x1	Orderly shutdown	0x1	Orderly shutdown

Table 5-8. FSM NVM Settings

5.8 Interrupt Settings

These settings detail the default configurations for what is monitored by nINT pin. All these settings can be changed though I^2C after startup.

		TPS6594-	-Q1	LP8764-Q1	
Register Name	Field Name	Value	Description	Value	Description
FSM_TRIG_MASK_1	GPIO1_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO1_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO2_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO2_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO3_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO3_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO4_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO4_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
FSM_TRIG_MASK_2	GPIO5_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO5_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO6_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO6_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO7_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO7_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO8_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO8_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
FSM_TRIG_MASK_3	GPIO9_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO9_FSM_MASK_P OL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO10_FSM_MASK	0x1	Masked	0x1	Masked
	GPIO10_FSM_MASK_ POL	0x0	Masking sets the signal value to '0'.	0x0	Masking sets the signal value to '0'.
	GPIO11_FSM_MASK	0x1	Masked		
	GPIO11_FSM_MASK_ POL	0x0	Masking sets the signal value to '0'.		
MASK_BUCK1_2	BUCK1_ILIM_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK1_OV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK1_UV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK2_ILIM_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK2_OV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK2_UV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
MASK_BUCK3_4	BUCK3_ILIM_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK3_OV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK3_UV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK4_OV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK4_UV_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	BUCK4_ILIM_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.

Table 5-9. Interrupt NVM Settings

Deviator Name	Field Name	TPS6594-	Q1	LP8764-Q1		
Register Name	Field Name	Value	Description	Value	Description	
MASK_BUCK5	BUCK5_ILIM_MASK	0x1	Interrupt is not generated.			
	BUCK5_OV_MASK	0x1	Interrupt is not generated.			
	BUCK5_UV_MASK	0x1	Interrupt is not generated.			
MASK_LDO1_2	LDO1_OV_MASK	0x1	Interrupt is not generated.			
	LDO1_UV_MASK	0x1	Interrupt is not generated.			
	LDO2_OV_MASK	0x1	Interrupt is not generated.			
	LDO2_UV_MASK	0x1	Interrupt is not generated.			
	LDO1_ILIM_MASK	0x1	Interrupt is not generated.			
	LDO2_ILIM_MASK	0x1	Interrupt is not generated.			
MASK_LDO3_4	LDO3_OV_MASK	0x1	Interrupt is not generated.			
	LDO3_UV_MASK	0x1	Interrupt is not generated.			
	LDO4_OV_MASK	0x1	Interrupt is not generated.			
	LDO4_UV_MASK	0x1	Interrupt is not generated.			
	LDO3_ILIM_MASK	0x1	Interrupt is not generated.			
	LDO4_ILIM_MASK	0x1	Interrupt is not generated.			
MASK_VMON	VMON2_UV_MASK			0x1	Interrupt is not generated.	
	VMON2_OV_MASK			0x1	Interrupt is not generated.	
	VMON1_UV_MASK			0x1	Interrupt is not generated.	
	VMON1_OV_MASK			0x1	Interrupt is not generated.	
	VCCA_OV_MASK	0x0	Interrupt is generated.	0x0	Interrupt is generated.	
	VCCA_UV_MASK	0x0	Interrupt is generated.	0x0	Interrupt is generated.	
MASK_GPIO1_8_FALL	GPIO1_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO2_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO3_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO4_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO5_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO6_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO7_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO8 FALL MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
MASK_GPIO1_8_RISE	GPIO1_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO2_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO3_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO4_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO5_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO6_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO7 RISE MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO8_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
MASK_GPIO9_11 /	GPIO9_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
MASK_GPIO9_10	GPIO9_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO10_FALL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO11_FALL_MASK	0x1	Interrupt is not generated.			
	GPIO10_RISE_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.	
	GPIO11_RISE_MASK	0x1	Interrupt is not generated.		1	

Table 5-9. Interrupt NVM Settings (continued)

Deviator Name	Field Name	TPS6594-Q1		LP8764-Q1	
Register Name	Field Name	Value	Description	Value	Description
MASK_STARTUP	NPWRON_START_MA SK	0x1	Interrupt is not generated.		
	ENABLE_MASK	0x0	Interrupt is generated.	0x0	Interrupt is generated.
	FSD_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
MASK_MISC	TWARN_MASK	0x0	Interrupt is generated.	0x0	Interrupt is generated.
	BIST_PASS_MASK	0x0	Interrupt is generated.	0x0	Interrupt is generated.
	EXT_CLK_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
MASK_MODERATE_E	BIST_FAIL_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
RR	REG_CRC_ERR_MAS K	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	SPMI_ERR_MASK	0x0	Interrupt is generated.	0x0	Interrupt is generated.
	NPWRON_LONG_MAS K	0x1	Interrupt is not generated.		
	PFSM_ERR_MASK	0x0	Interrupt is generated.	0x0	Interrupt is generated
MASK_FSM_ERR	WD_MASK			0x1	Interrupt is not generated.
	IMM_SHUTDOWN_MA SK	0x0	Interrupt is generated.	0x0	Interrupt is generated.
	MCU_PWR_ERR_MAS K	0x0	Interrupt is generated.	0x1	Interrupt is not generated.
	SOC_PWR_ERR_MAS K	0x0	Interrupt is generated.	0x0	Interrupt is generated.
	ORD_SHUTDOWN_MA SK	0x0	Interrupt is generated.	0x0	Interrupt is generated.
MASK_COMM_ERR	COMM_FRM_ERR_MA SK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	COMM_CRC_ERR_MA SK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	COMM_ADR_ERR_MA SK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	I2C2_CRC_ERR_MAS K	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	I2C2_ADR_ERR_MAS K	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
MASK_READBACK_E RR	EN_DRV_READBACK_ MASK	0x0	Interrupt is generated.	0x1	Interrupt is not generated.
	NINT_READBACK_MA SK	0x0	Interrupt is generated.	0x0	Interrupt is generated.
	NRSTOUT_READBAC K_MASK	0x0	Interrupt is generated.	0x1	Interrupt is not generated.
	NRSTOUT_SOC_ READBACK_MASK	0x0	Interrupt is generated.	0x1	Interrupt is not generated.
MASK_ESM	ESM_SOC_PIN_MASK	0x1	Interrupt is not generated.		
	ESM_SOC_RST_MAS K	0x1	Interrupt is not generated.		
	ESM_SOC_FAIL_MAS K	0x1	Interrupt is not generated.		
	ESM_MCU_PIN_MASK	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	ESM_MCU_RST_MAS K	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.
	ESM_MCU_FAIL_MAS K	0x1	Interrupt is not generated.	0x1	Interrupt is not generated.

Table 5-9. Interrupt NVM Settings (continued)

5.9 POWERGOOD Settings

These settings detail the default configurations for what is monitored by PGOOD pin. All these settings can be changed though I^2C after startup.

Degister Nome	Field Nome	TPS6594-Q1		LP8764-	Q1
Register Name	Field Name	Value	Description	Value	Description
PGOOD_SEL_1	PGOOD_SEL_BUCK1	0x0	Masked	0x0	Masked
	PGOOD_SEL_BUCK2	0x0	Masked	0x0	Masked
	PGOOD_SEL_BUCK3	0x0	Masked	0x0	Masked
	PGOOD_SEL_BUCK4	0x0	Masked	0x0	Masked
PGOOD_SEL_2	PGOOD_SEL_BUCK5	0x0	Masked		
PGOOD_SEL_3	PGOOD_SEL_LDO1	0x0	Masked		
	PGOOD_SEL_LDO2	0x0	Masked		
	PGOOD_SEL_LDO3	0x0	Masked		
	PGOOD_SEL_LDO4	0x0	Masked		
PGOOD_SEL_4	PGOOD_SEL_VCCA	0x0	Masked	0x0	Masked
	PGOOD_SEL_VMON1			0x0	Masked
	PGOOD_SEL_VMON2			0x0	Masked
	PGOOD_SEL_TDIE_W ARN	0x0	Masked	0x0	Masked
	PGOOD_SEL_NRSTO UT	0x0	Masked	0x0	Masked
	PGOOD_SEL_NRSTO UT_SOC	0x0	Masked	0x0	Masked
	PGOOD_POL	0x0	PGOOD signal is high when monitored inputs are valid	0x0	PGOOD signal is high when monitored inputs are valid
	PGOOD_WINDOW	0x1	Both undervoltage and overvoltage are monitored	0x0	Only undervoltage is monitored

5.10 Miscellaneous Settings

These settings detail the default configurations of additional settings, such as spread spectrum, BUCK frequency, and LDO timeout. All these settings can be changed though I²C after startup.

Deviator Nome	Field Name	TPS6594	-Q1	LP8764-Q1	
Register Name	Field Name	Value	Description	Value	Description
PLL_CTRL	EXT_CLK_FREQ	0x1	2.2 MHz	0x0	1.1 MHz
CONFIG_1	TWARN_LEVEL	0x0	120°C	0x0	130°C
I2 EN	I2C1_HS	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode master code.	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode master code.
	I2C2_HS	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode master code.	0x0	Standard, fast or fast+ by default, can be set to Hs-mode by Hs-mode master code.
	EN_ILIM_FSM_CTRL	0x0	Buck/LDO regulators ILIM interrupts do not affect FSM triggers.	0x0	Buck regulators ILIM interrupts do not affect FSM triggers.
	NSLEEP1_MASK	0x0	NSLEEP1(B) affects FSM state transitions.	0x1	NSLEEP1(B) does not affect FSM state transitions.
	NSLEEP2_MASK	0x0	NSLEEP2(B) affects FSM state transitions.	0x1	NSLEEP2(B) does not affect FSM state transitions.

Table 5-11. Miscellaneous NVM Settings

Table 5-11. Miscellaneous NVM Settings (continued)

		TPS6594-	-Q1	LP8764-Q1	
Register Name	Field Name	Value	Description	Value	Description
CONFIG_2	BB_CHARGER_EN	0x0	Disabled		
	BB_VEOC	0x0	2.5 V		
	BB_ICHR	0x0	100 µA		
RECOV_CNT_REG_2	RECOV_CNT_THR	0xf	Oxf	0xf	0xf
BUCK_RESET_REG	BUCK1_RESET	0x0	0x0	0x0	0x0
	BUCK2_RESET	0x0	0x0	0x0	0x0
	BUCK3_RESET	0x0	0x0	0x0	0x0
	BUCK4_RESET	0x0	0x0	0x0	0x0
	BUCK5_RESET	0x0	0x0		
SPREAD_SPECTRUM	SS_EN	0x0	Spread spectrum disabled	0x0	Spread spectrum disabled
_1	SS_MODE	0x1	Mixed dwell	0x1	Mixed dwell
	SS_DEPTH	0x0	No modulation	0x0	No modulation
SPREAD_SPECTRUM	SS PARAM1	0x7	0x7	0x7	0x7
_2	 SS_PARAM2	0xc	Охс	0xc	0xc
FREQ_SEL	BUCK1_FREQ_SEL	0x1	4.4 MHz	0x1	4.4 MHz
	BUCK2_FREQ_SEL	0x1	4.4 MHz	0x1	4.4 MHz
	BUCK3_FREQ_SEL	0x1	4.4 MHz	0x1	4.4 MHz
	BUCK4_FREQ_SEL	0x1	4.4 MHz	0x1	4.4 MHz
	BUCK5_FREQ_SEL	0x1	4.4 MHz		
FSM_STEP_SIZE	PFSM_DELAY_STEP	0xb	0xb	0xb	0xb
LDO_RV_TIMEOUT_	LDO1_RV_TIMEOUT	0xf	16 ms		
REG_1	LDO2_RV_TIMEOUT	0xf	16 ms		
LDO_RV_TIMEOUT_	LDO3 RV TIMEOUT	0xf	16 ms		
REG_2	LDO4_RV_TIMEOUT	0xf	16 ms		
USER SPARE REGS	USER_SPARE_1	0x0	0x0	0x0	0x0
	USER SPARE 2	0x0	0x0	0x0	0x0
	USER_SPARE_3	0x0	0x0	0x0	0x0
	USER_SPARE_4	0x0	0x0	0x0	0x0
ESM_MCU_MODE_ CFG	ESM_MCU_EN	0x0	ESM_MCU disabled. MCU can set ENABLE_DRV bit to 1 if all other interrupt bits are cleared.	0x0	ESM_MCU disabled. MCU can set ENABLE_DRV bit to 1 if all other interrupt bits are cleared.
ESM_SOC_MODE_ CFG	ESM_SOC_EN	0x0	ESM_SoC disabled. MCU can set ENABLE_DRV bit to 1 if all other interrupt bits are cleared.		
RTC_CTRL_2	XTAL_EN	0x1	Crystal oscillator is enabled		
	LP_STANDBY_SEL	0x1	Low power standby state is used as standby state (LDOINT is disabled).	0x0	Normal standby state is used.
	FAST_BIST	0x1	Only analog BIST is run when transitioning from LP_STANDBY to ACTIVE state.	0x1	Only analog BIST is run at BOOT BIST.
	STARTUP_DEST	0x3	ACTIVE	0x3	ACTIVE
	XTAL_SEL	0x1	9 pF		
PFSM_DELAY_REG_1	PFSM_DELAY1	0x54	0x54	0x0	0x0
PFSM_DELAY_REG_2	PFSM_DELAY2	0x0	0x0	0x0	0x0
PFSM_DELAY_REG_3	PFSM_DELAY3	0x0	0x0	0x0	0x0

Table 5-11. Miscellaneous NVM Settings (continued)					
Register Name	Field Name	TPS6594-Q1		LP8764-Q1	
		Value	Description	Value	Description
PFSM_DELAY_REG_4	PFSM_DELAY4	0x0	0x0	0x0	0x0

5.11 Interface Settings

These settings detail the default interface, interface configurations, and device addresses. These settings cannot be changed after device startup.

Register Name	Field Name	TPS6594-Q	TPS6594-Q1		LP8764-Q1	
		Value	Description	Value	Description	
SERIAL_IF_CONFIG	I2C_SPI_SEL	0x0	12C	0x0	12C	
	I2C1_SPI_CRC_EN	0x0	CRC disabled	0x0	CRC disabled	
	I2C2_CRC_EN	0x0	CRC disabled	0x0	CRC disabled	
I2C1_ID_REG	I2C1_ID	0x48	0x48	0x4c	0x4c	
I2C2_ID_REG	I2C2_ID	0x12	0x12	0x13	0x13	

Table 5-12. Interface NVM Settings

5.12 Multi-Device Settings

These settings detail whether the device is a operating as a master or slave in the system. These settings cannot be changed after device startup.

Deviator Norre	Field Neme	TPS6594	-Q1	LP8764-0	21
Register Name	Field Name	Value	Description	Value	Description
SPMI_CONFIG_1	SPMI_CRC_EN	0x1	SPMI CRC check is enabled.	0x1	SPMI CRC check is enabled.
	SPMI_MASTER_SEL	0x1	Master mode	0x0	Slave mode
	SPMI_CLK_SEL	0x2	5 MHz	0x2	5 MHz
SPMI_CONFIG_2	SPMI_IF_SEL	0x0	Debugs feature and uses master logic to implement the logical slave.	0x0	Debug feature and uses master logic to implement logical slave.
	SPMI_RETRY_LIMIT	0x3	Three retries in case an error is detected.	0x3	Three retries in case of error detected.
	SPMI_SLAVE_ASR_H OLD	0x0	TBD	0x0	TBD
	SPMI_WD_AUTO_BOO T	0x1	SPMI auto boot is enabled.	0x1	SPMI auto boot is enabled.
	SPMI_EN	0x1	SPMI is enabled.	0x1	SPMI is enabled.
	SPMI_WD_EN	0x1	SPMI WD is enabled.	0x1	SPMI WD is enabled.
SPMI_CONFIG_3	SPMI_WD_BOOT_ INTERVAL	0x8	0x8	0x8	0x8
	SPMI_WD_RUNTIME_ INTERVAL	0x8	0x8	0x8	0x8
SPMI_CONFIG_4	SPMI_WD_RESPONSE _ TIMEOUT	0x8	0x8	0x8	0x8
	SPMI_PFSM_RESPON SE_ TIMEOUT	0x8	0x8	0x8	0x8
SPMI_CONFIG_5	SPMI_WD_AUTO_BOO T_ TIMEOUT	0x8	0x8		
SPMI_CONFIG_6	SPMI_BOOT_DELAY	0x0	0x0		
SPMI_ID	SPMI_SID	0x5	0x5	0x3	0x3
	SPMI_MID	0x0	0x0	0x0	0x0
SLAVE_NVM_ID_1	SLAVE1_NVM_ID	0x5	0x5		

Table 5-13. Multi-Device NVM Settings

Table 5-13. Multi-Device NVM Settings (continued)						
Register Name	Field Name	TPS6594	I-Q1	LP8764-0	Q1	
	rieu name	Value	Description	Value	Description	
SLAVE_NVM_ID_2	SLAVE2_NVM_ID	0x33	0x33			
SLAVE_NVM_ID_3	SLAVE3_NVM_ID	0x0	0x0			
SLAVE_NVM_ID_4	SLAVE4_NVM_ID	0x0	0x0			
SLAVE_NVM_ID_5	SLAVE5_NVM_ID	0x0	0x0			
SLAVE_NVM_ID_6	SLAVE6_NVM_ID	0x0	0x0			

5.13 Watchdog Settings

These settings detail the default watchdog addresses. These settings can be changed though I²C after startup.

Table 5-14. W	Vatchdog NVM	Settings
---------------	--------------	----------

Deviator Name	Field Name	TPS6594-Q1		LP8764-Q1	
Register Name		Value	Description	Value	Description
WD_THR_CFG	WD_EN	0x1	Watchdog enabled. MCU can set the ENABLE_DRV bit to 1 if: - watchdog is out of the Long Window - WD_FAIL_CNT[3:0] =< WD_FAIL_TH[2:0] - WD_FIRST_OK=1 - all other interrupt status bits are cleared.	0x0	Watchdog disabled. MCU can set the ENABLE_DRV bit to 1 if all other interrupt status bits are cleared.

6 Pre-Configurable Finite State Machine (PFSM) Settings

This section describes the default PFSM settings of the TPS6594-Q1 and LP8764-Q1 devices. These settings cannot be changed after device startup.

6.1 Configured States

In this PDN, the following four power states are configured into the PMIC devices:

- Standby
- Active
- MCU Only
- Retention (both DDR and GPIO retention modes)

In Figure 6-1, the configured power states are described, along with the transition conditions required to move between configured states. Additionally, the transitions to hardware states, such as SAFE RECOVERY are described.

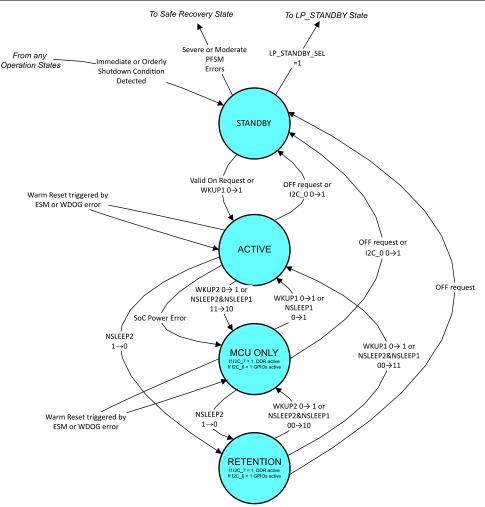


Figure 6-1. Pre-Configurable State Machine (PFSM) States and Transitions

The definition for each power state is described below:

- **STANDBY** The PMICs are powered by a valid supply on the system power rail (VCCA > VCCA_UV) and waiting for a start-up event or condition. All device resources are powered down in the STANDBY state. EN_DRV is forced low in this state. The processor is in the Off State, no voltage domains are energized.
- ACTIVE The PMICs are powered by a valid supply and have received a start-up event. The PMICs have full capacity to supply the processor and other platform modules. The processor has completed a recommended power up sequence with all voltage domains energized in both MCU & Main processor sections. MCU can now set the ENABLE_DRV bit high.
- **MCU ONLY** The PMICs are powered by a valid supply. Only the power resources assigned to the processor's MCU rails are on or in a low power mode (LPM) depending on the specific resource setting. If a given resource is maintained active, then all linked subsystems are automatically maintained active. ENABLE_DRV bit can be set high by the MCU, or remains unchanged in this state.
- **RETENTION** The PMICs are powered by a valid supply. Only the power resources assigned to the (DDR or GPIO) processor's retention rails are on or in LPM depending on the specific resource setting. If a given resource is maintained active, then all linked subsystems are automatically maintained active. ENABLE_DRV bit is cleared by the device in this state. If the I2C_6 bit is set high in both PMICs, they will enter GPIO retention state. If the I2C_7 bit is set high in both PMICs, they will enter DDR retention state. These bits need to be set by I2C before a trigger for the retention state occurs.

6.2 State Transitions

As shown in Figure 6-1, there are various triggers that can enable a state transition between configured states and hardware states. Table 6-1 describes each trigger and its associated state transition from highest priority to lowest priority.

Table 6-1. State Transition Triggers						
Trigger	PFSM Current State	PFSM Destination State	Power Sequence Executed			
Immediate Shutdown	STANDBY, ACTIVE, MCU ONLY, RETENTION	SAFE	TO_SAFE_SEVERE			
MCU Power Error	STANDBY, ACTIVE, MCU ONLY, RETENTION	SAFE	TO_SAFE			
Orderly Shutdown	STANDBY, ACTIVE, MCU ONLY, RETENTION	SAFE	TO_SAFE_ORDERLY			
OFF Request	STANDBY, ACTIVE, MCU ONLY, RETENTION	STANDBY	TO_STANDBY			
WDOG Error	ACTIVE	ACTIVE	WDOG_ERROR_ACTIVE			
ESM MCU Error	ACTIVE	ACTIVE				
ESM SOC Error	ACTIVE	ACTIVE	ESM_ERROR			
WDOG Error	MCU ONLY	MCU ONLY	WDOG_ERROR_MCU			
ESM MCU Error	MCU ONLY	MCU ONLY	ESM_ERROR			
SOC Power Error	ACTIVE	MCU ONLY	TO_MCU			
I2C1 bit goes high	ACTIVE, MCU ONLY	No State Change	No Sequence, RUNTIME BIST executes			
ON Request	STANDBY, ACTIVE, MCU ONLY, RETENTION	ACTIVE				
WKUP1 goes high	STANDBY, ACTIVE, MCU ONLY, RETENTION	ACTIVE	TO_ACTIVE			
NSLEEP1 and NSLEEP2 are high ⁽¹⁾	STANDBY, ACTIVE, MCU ONLY, RETENTION	ACTIVE				
MCU ON Request	STANDBY, ACTIVE, MCU ONLY, RETENTION	MCU ONLY				
WKUP2 goes high	STANDBY, ACTIVE, MCU ONLY, RETENTION	MCU ONLY	TO_MCU			
NSLEEP1 goes low and NSLEEP2 goes high ⁽¹⁾	ACTIVE, MCU ONLY, RETENTION	MCU ONLY				
NSLEEP1 goes low and NSLEEP2 goes low ⁽¹⁾	ACTIVE, MCU ONLY	RETENTION				
NSLEEP1 goes high and NSLEEP2 goes low ⁽¹⁾	ACTIVE, MCU ONLY	RETENTION	TO_RETENTION			
I2C_0 bit goes high	STANDBY, ACTIVE, MCU ONLY	STANDBY	TO_STANDBY			

Table 6-1. State Transition Triggers

(1) NSLEEP1 and NSLEEP2 of the master PMIC can be accessed through GPIO pin or through a register bit. If either the register bit or the GPIO pin is pulled high, the NSLEEPx value will read as a *high* logic level.

6.3 Power Sequences

6.3.1 TO_SAFE_SEVERE and TO_SAFE

The immediate shutdown and MCU error events both cause the PMICs to shut down all rails without delay. However, the immediate shutdown (TO_SAFE_SEVERE) will disable the clocks and switching of the BUCKs first and rely on the pulldown resistors of the BUCKs and LDOs to discharge the rails. This is to prevent any damage of the PMICs in case of over voltage on VCCA or thermal shutdown. The MCU error (TO_SAFE) will keep the BUCKs switching until they are disabled. The sequence for these triggers is shown in Figure 6-2.

l				Pre-Configurable Fin	ite State Machine (PFSM) Set
	Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
	nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
	nRSTOUT	TPS6594-Q1		0 us	MCU_PORz_1V8
	GPIO1	LP8764-Q1		0 us	EXT_VDDR_IO
	BUCK4	TPS6594-Q1		0 us	VDD_DDR_1V1
	BUCK2	LP8764-Q1		0 us	VDD_RAM_0V85
	LDO3	TPS6594-Q1		0 us	VDD_WK_0V8
	LDO2	TPS6594-Q1		0 us	VDA_DLL_0V8
	BUCK3	LP8764-Q1		0 us	VDD_CORE_0V8
	BUCK1	LP8764-Q1		0 us	VDD_CPU_AVS
	BUCK3	TPS6594-Q1		0 us	VDD_MCU_0V85
	LDO4	TPS6594-Q1		0 us	VDA_PLL_1V8
	BUCK5	TPS6594-Q1		0 us	VDA_PHY_1V8
	BUCK4	LP8764-Q1		0 us	VDD_IO_1V8
	LDO1	TPS6594-Q1		0 us	VDD1_LPDDR4_1V8
	BUCK1	TPS6594-Q1		0 us	VDA_MCU_1V8
	BUCK2	TPS6594-Q1		0 us	VDD_MCUIO_1V8
	GPIO7	LP8764-Q1		0 us	GPIORET_LDSW
	GPIO10	LP8764-Q1		0 us	3V3IO_LDSW
	GPIO3	TPS6594-Q1		0 us	MCUIO3V3_LDSW
		Figure 6-2. TO_SAF	E_SEVERE and TO	SAFE Sequence	9

Figure 6-2. TO_SAFE_SEVERE and TO_SAFE Sequence

6.3.2 TO_SAFE_ORDERLY and TO_STANDBY

If a moderate error occurs, an orderly shutdown trigger will be generated. This will shutdown the PMICs using the processor's recommended power down sequence and then transition to SAFE state to allow the devices to restart and check if the error is still present.

If an OFF request occurs, such as the ENABLE pin of the TPS6594-Q1 device being pulled low, the same power down sequence will occur, except that the PMICs will remain in STANDBY state at the end, rather than going into SAFE state. The power sequence for both of these events is shown in Figure 6-3.

			Pre-Configurable F	Finite State Machine (PFSN
Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
nRSTOUT	TPS6594-Q1		0 us	MCU_PORz_1V8
GPIO1	LP8764-Q1		200 us	EXT_VDDR_IO
BUCK4	TPS6594-Q1		500 us	VDD_DDR_1V1
BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
LDO3	TPS6594-Q1		1000 us	VDD_WK_0V8
LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8
BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8
BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS
BUCK3	TPS6594-Q1		1000 us	VDD_MCU_0V85
LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8
BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8
BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8
LDO1	TPS6594-Q1		1500 us	VDD1_LPDDR4_1V8
BUCK1	TPS6594-Q1		1500 us	VDA_MCU_1V8
BUCK2	TPS6594-Q1		1500 us	VDD_MCUIO_1V8
GPIO7	LP8764-Q1		2000 us	GPIORET_LDSW
GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
GPIO3	TPS6594-Q1		2000 us	MCUIO3V3_LDSW
F	igure 6-3. TO SAI	FE ORDERLY and TO	STANDBY Seau	ience

Figure 6-3. TO_SAFE_ORDERLY and TO_STANDBY Sequence

6.3.3 WDOG_ERROR_ACTIVE

In the event of a watchdog error, the nRSTOUT and nRSTOUT_SOC signals will be driven low and the recovery count will increment. Then, all BUCKs and LDOs will be reset to their default voltages. If no errors are present, the nRSTOUT and nRSTOUT_SOC signals will return to a high value and the PMICs will remain in ACTIVE state. Note that the GPIOs do not reset during the warm reset event. The sequence is shown in Figure 6-4.

Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
nRSTOUT	TPS6594-Q1		0 us	MCU_PORz_1V8
BUCK2	TPS6594-Q1		0 us	VDD_MCUIO_1V8
BUCK1	TPS6594-Q1		0 us	VDA_MCU_1V8
LDO1	TPS6594-Q1		0 us	VDD1_LPDDR4_1V8
BUCK4	LP8764-Q1		0 us	VDD_IO_1V8
BUCK5	TPS6594-Q1		0 us	VDA_PHY_1V8
LDO4	TPS6594-Q1		0 us	VDA_PLL_1V8
BUCK3	TPS6594-Q1		0 us	VDD_MCU_0V85
BUCK1	LP8764-Q1		0 us	VDD_CPU_AVS
BUCK3	LP8764-Q1		0 us	VDD_CORE_0V8
LDO2	TPS6594-Q1		0 us	VDA_DLL_0V8
LDO3	TPS6594-Q1		0 us	VDD_WK_0V8
BUCK2	LP8764-Q1		0 us	VDD_RAM_0V85
BUCK4	TPS6594-Q1		0 us	VDD_DDR_1V1
nRSTOUT	TPS6594-Q1		1000 us	MCU_PORz_1V8
nRSTOUT_SOC	TPS6594-Q1		1000 us	SOC_PORz_1V8

Figure 6-4. WDOG_ERROR_ACTIVE Sequence

6.3.4 ESM_ERROR

In the event of an ESM error, the nRSTOUT signal will be driven low and then driven high again after 200 μ s. There is no change to the power rails. The sequence is shown in Figure 6-5.

Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
nRSTOUT_SOC	TPS6594-Q1		200 us	SOC_PORz_1V8

6.3.5 WDOG_ERROR_MCU

In the event of an watchdog error while in MCU-only mode, the nRSTOUT signal will be driven low and the recovery count will increment. Then, all the BUCKs and LDOs that are active in MCU state will be reset to their default voltages. If no errors are present, then the nRSTOUT signal will return to a high logic value and the PMICs will remain in MCU state. Note that the GPIOs do not reset during the MCU warm reset event. The sequence is shown in Figure 6-6.

Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT	TPS6594-Q1		0 us	MCU_PORz_1V8
BUCK2	TPS6594-Q1		0 us	VDD_MCUIO_1V8
BUCK1	TPS6594-Q1		0 us	VDA_MCU_1V8
LDO1	TPS6594-Q1		0 us	VDD1_LPDDR4_1V8
BUCK3	TPS6594-Q1		0 us	VDD_MCU_0V85
LDO3	TPS6594-Q1		0 us	VDD_WK_0V8
BUCK4	TPS6594-Q1		0 us	VDD_DDR_1V1
nRSTOUT	TPS6594-Q1		1000 us	MCU_PORz_1V8

Figure 6-6. WDOG_ERROR_MCU Sequence

6.3.6 TO_MCU

Any event that triggers this sequence will allow all rails not powering the MCU domain of the processor to shutdown. It will then enable the MCU rails, in the event that they are not already active (such as the STANDBY to MCU case). If the I2C_6 bit is set high in both PMICs, they will retain the processor GPIOs while keeping the MCU active as shown in Figure 6-7. If the I2C_7 bit is set high in both PMICs, they will retain the SRAM while keeping the MCU active as shown in Figure 6-8. If both bits are set high in both devices, both GPIO and DDR rail will be retained while the MCU is active, as shown in Figure 6-9. Lastly, if both I2C6 and I2C7 are set low in both devices, only the MCU will remain active in this state as shown in Figure 6-10. These bits need to be set by I2C in both PMICs before a trigger for the retention state occurs.

gurable Finite State M	lachine (PFSM) Settings			W
Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
GPIO1	LP8764-Q1		200 us	EXT_VDDR_IO
BUCK4	TPS6594-Q1		500 us	VDD_DDR_1V1
BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8
BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8
BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS
LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8
BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8
BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8
LDO1	TPS6594-Q1		1500 us	VDD1_LPDDR4_1V8
GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW
GPIO7	LP8764-Q1		2000 us	GPIORET_LDSW
BUCK2	TPS6594-Q1		4000 us	VDD_MCUIO_1V8
BUCK1	TPS6594-Q1		4000 us	VDA_MCU_1V8
BUCK3	TPS6594-Q1		4500 us	VDD_MCU_0V85
LDO3	TPS6594-Q1		4500 us	VDD_WK_0V8
nRSTOUT	TPS6594-Q1		14000 us	MCU_PORz
	Figure 6-7.	TO_MCU Sequence w	ith I2C_6 = 1	

			Pre-Configurable Finite State Machine (PFSM) S	
Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
LDO3	TPS6594-Q1		1000 us	VDD_WK_0V8
LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8
BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8
BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS
LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8
BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8
BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8
GPIO7	LP8764-Q1		2000 us	GPIORET_LDSW
GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW
BUCK2	TPS6594-Q1	/	4000 us	VDD_MCUIO_1V8
BUCK1	TPS6594-Q1	/	4000 us	VDA_MCU_1V8
LDO1	TPS6594-Q1	/	4000 us	VDD1_LPDDR4_1V8
BUCK3	TPS6594-Q1	/	4500 us	VDD_MCU_0V85
BUCK4	TPS6594-Q1	/	5000 us	VDD_DDR_1V1
GPIO1	LP8764-Q1		5500 us	EXT_VDDR_IO
nRSTOUT	TPS6594-Q1		14000 us	MCU_PORz
Figure 6-8. TO_MCU Sequence with I2C_7 = 1				

gurable Finite State M	lachine (PFSM) Settings			W
Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8
BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8
BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS
LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8
BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8
BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8
GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW
GPIO7	LP8764-Q1		2000 us	GPIORET_LDSW
BUCK2	TPS6594-Q1		4000 us	VDD_MCUIO_1V8
BUCK1	TPS6594-Q1		4000 us	VDA_MCU_1V8
LDO1	TPS6594-Q1		4000 us	VDD1_LPDDR4_1V8
BUCK3	TPS6594-Q1		4500 us	VDD_MCU_0V85
LDO3	TPS6594-Q1		4500 us	VDD_WK_0V8
BUCK4	TPS6594-Q1		5000 us	VDD_DDR_1V1
GPIO1	LP8764-Q1		5500 us	EXT_VDDR_IO
nRSTOUT	TPS6594-Q1		14000 us	MCU_PORz
	Figure 6-9. TO_MC	CU Sequence with I2C	6 = 1 and I2C_7	= 1

			Pre-Configurable F	Pre-Configurable Finite State Machine (PFSM	
Sequence Name	Device	Delay Diagram	Total Delay	Rail Name	
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8	
GPIO1	LP8764-Q1		200 us	EXT_VDDR_IO	
BUCK4	TPS6594-Q1		500 us	VDD_DDR_1V1	
BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85	
LDO3	TPS6594-Q1		1000 us	VDD_WK_0V8	
LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8	
BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8	
BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS	
LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8	
BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8	
BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8	
LDO1	TPS6594-Q1		1500 us	VDD1_LPDDR4_1V8	
GPIO7	LP8764-Q1		2000 us	GPIORET_LDSW	
GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW	
GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW	
BUCK2	TPS6594-Q1		4000 us	VDD_MCUIO_1V8	
BUCK1	TPS6594-Q1		4000 us	VDA_MCU_1V8	
BUCK3	TPS6594-Q1	/	4500 us	VDD_MCU_0V85	
nRSTOUT	TPS6594-Q1		14000 us	MCU_PORz	
	Figure 6-10. TO_N	MCU Sequence with I2	2C6 = 0 and I2C_7	' = 0	

6.3.7 TO_ACTIVE

When a trigger causes the TO_ACTIVE sequence to execute, all rails of the PMICs will power up in the processor's recommended power up sequence as shown in Figure 6-11.

Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
GPIO3	TPS6594-Q1		0 us	MCUIO3V3_LDSW
GPIO10	LP8764-Q1		0 us	3V3IO_LDSW
GPIO7	LP8764-Q1		0 us	GPIORET_LDSW
BUCK2	TPS6594-Q1	/	2000 us	VDD_MCUIO_1V8
BUCK1	TPS6594-Q1	/	2000 us	VDA_MCU_1V8
LDO1	TPS6594-Q1/	/	2000 us	VDD1_LPDDR4_1V8
BUCK4	LP8764-Q1	/	2000 us	VDD_IO_1V8
BUCK5	TPS6594-Q1	/	2000 us	VDA_PHY_1V8
LDO4	TPS6594-Q1/	/	2000 us	VDA_PLL_1V8
BUCK3	TPS6594-Q1	/	2500 us	VDD_MCU_0V85
BUCK1	LP8764-Q1	/	2500 us	VDD_CPU_AVS
BUCK3	LP8764-Q1	/	2500 us	VDD_CORE_0V8
LDO2	TPS6594-Q1	/	2500 us	VDA_DLL_0V8
LDO3	TPS6594-Q1	/	2500 us	VDD_WK_0V8
BUCK2	LP8764-Q1		3000 us	VDD_RAM_0V85
BUCK4	TPS6594-Q1		3000 us	VDD_DDR_1V1
GPIO1	LP8764-Q1		3500 us	EXT_VDDR_IO
nRSTOUT	TPS6594-Q1		12000 us	MCU_PORz_1V8
nRSTOUT_SOC	TPS6594-Q1		12000 us	SOC_PORz_1V8
	Figu	re 6-11 TO ACTIVE	Soguonco	

Figure 6-11. TO_ACTIVE Sequence

6.3.8 TO_RETENTION

Any event that triggers this sequence will disable all power rails and GPIOs that are not supplying the retention rails. If the I2C_6 bit is set high in both PMICs, they will enter GPIO retention state as shown in Figure 6-12. If the I2C_7 bit is set high in both PMICs, they will enter DDR retention state as shown in Figure 6-13. If both bits are set, both GPIO and DDR rail will be retained, as shown in Figure 6-14. These bits need to be set by I2C in both PMICs before a trigger for the retention state occurs. If neither I2C6 or I2C7 are set high, the GPIOs and DDR will not remain active, as shown in Figure 6-15.

n			I	Pre-Configurable Fin	ite State Machine (PFSM) S
	Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
	nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
	nRSTOUT	TPS6594-Q1		0 us	MCU_PORz
	GPIO1	LP8764-Q1		200 us	EXT_VDDR_IO
	BUCK4	TPS6594-Q1		500 us	VDD_DDR_1V1
	BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
	LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8
	BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8
	BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS
	BUCK3	TPS6594-Q1		1000 us	VDD_MCU_0V85
	LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8
	BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8
	BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8
	LDO1	TPS6594-Q1		1500 us	VDD1_LPDDR4_1V8
	BUCK1	TPS6594-Q1		1500 us	VDA_MCU_1V8
	BUCK2	TPS6594-Q1		1500 us	VDD_MCUIO_1V8
	GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
	GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW

Pre-Configurable Finite State Machine (PFSM) Settings

ίgι	irable Finite State Ma	achine (PFSM) Settings			W
	Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
	nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
	nRSTOUT	TPS6594-Q1		0 us	MCU_PORz
	BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
	LDO3	TPS6594-Q1		1000 us	VDD_WK_0V8
	LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8
	BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8
	BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS
	BUCK3	TPS6594-Q1		1000 us	VDD_MCU_0V85
	LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8
	BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8
	BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8
	BUCK1	TPS6594-Q1		1500 us	VDA_MCU_1V8
	BUCK2	TPS6594-Q1		1500 us	VDD_MCUIO_1V8
	GPIO7	LP8764-Q1		2000 us	GPIORET_LDSW
	GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
	GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW

Figure 6-13. TO_RETENTION Sequence, I2C7 = 1

		Pr	e-Configurable Fin	ute State Machine (PFSI
Sequence Name	Device	Delay Diagram	Total Delay	Rail Name
nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
nRSTOUT	TPS6594-Q1		0 us	MCU_PORz
BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
LDO2	TPS6594-Q1		1000 us	VDA_DLL_0V8
BUCK3	LP8764-Q1		1000 us	VDD_CORE_0V8
BUCK1	LP8764-Q1		1000 us	VDD_CPU_AVS
BUCK3	TPS6594-Q1		1000 us	VDD_MCU_0V85
LDO4	TPS6594-Q1		1500 us	VDA_PLL_1V8
BUCK5	TPS6594-Q1		1500 us	VDA_PHY_1V8
BUCK4	LP8764-Q1		1500 us	VDD_IO_1V8
BUCK1	TPS6594-Q1		1500 us	VDA_MCU_1V8
BUCK2	TPS6594-Q1		1500 us	VDD_MCUIO_1V8
GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW
	nRSTOUT_SOC nRSTOUT BUCK2 LDO2 BUCK3 BUCK1 BUCK5 BUCK4 BUCK1 BUCK2 GPIO10	nRSTOUT_SOC TPS6594-Q1 nRSTOUT TPS6594-Q1 BUCK2 LP8764-Q1 LDO2 TPS6594-Q1 BUCK3 LP8764-Q1 BUCK1 LP8764-Q1 BUCK3 TPS6594-Q1 BUCK3 TPS6594-Q1 BUCK3 TPS6594-Q1 BUCK4 LP8764-Q1 BUCK5 TPS6594-Q1 BUCK4 LP8764-Q1 BUCK2 TPS6594-Q1 GPIO10 LP8764-Q1	Sequence Name Device Delay Diagram nRSTOUT_SOC TPS6594-Q1	Sequence Name Device Delay Diagram Total Delay nRSTOUT_SOC TPS6594-Q1 0 us 0 us nRSTOUT TPS6594-Q1 0 us 0 us BUCK2 LP8764-Q1 500 us 1000 us BUCK3 LP8764-Q1 1000 us 1000 us BUCK3 LP8764-Q1 1000 us 1000 us BUCK3 TPS6594-Q1 1000 us 1000 us BUCK3 TPS6594-Q1 1000 us 1000 us BUCK3 TPS6594-Q1 1000 us 1000 us BUCK4 LP8764-Q1 1000 us 1500 us BUCK5 TPS6594-Q1 1500 us 1500 us BUCK4 LP8764-Q1 1500 us 1500 us BUCK1 TPS6594-Q1 1500 us 1500 us BUCK2 TPS6594-Q1 1500 us 1500 us BUCK2 TPS6594-Q1 1500 us 1500 us

Figure 6-14. TO_RETENTION Sequence, I2C6 = 1 and I2C7 = 1

	Sequence Name	Device	Delay Diagram	Total Delay	W Rail Name
r	nRSTOUT_SOC	TPS6594-Q1		0 us	SOC_PORz_1V8
r	nRSTOUT	TPS6594-Q1		0 us	MCU_POR z
(GPIO1	LP8764-Q1		200 us	EXT_VDDR_IO
E	BUCK4	TPS6594-Q1		500 us	VDD_DDR_1V1
E	BUCK2	LP8764-Q1		500 us	VDD_RAM_0V85
L	_DO3	TPS6594-Q1	\	1000 us	VDD_WK_0V8
L	_DO2	TPS6594-Q1	L	1000 us	VDA_DLL_0V8
E	BUCK3	LP8764-Q1	\	1000 us	VDD_CORE_0V8
E	BUCK1	LP8764-Q1	\	1000 us	VDD_CPU_AVS
E	BUCK3	TPS6594-Q1	\	1000 us	VDD_MCU_0V85
L	_DO4	TPS6594-Q1	\	1500 us	VDA_PLL_1V8
E	BUCK5	TPS6594-Q1	\	1500 us	VDA_PHY_1V8
E	BUCK4	LP8764-Q1	\	1500 us	VDD_IO_1V8
L	_DO1	TPS6594-Q1	\	1500 us	VDD1_LPDDR4_1V8
E	BUCK1	TPS6594-Q1	\	1500 us	VDA_MCU_1V8
E	BUCK2	TPS6594-Q1	\	1500 us	VDD_MCUIO_1V8
(GPIO7	LP8764-Q1		2000 us	GPIORET_LDSW
(GPIO10	LP8764-Q1		2000 us	3V3IO_LDSW
(GPIO3	TPS6594-Q1		2000 us	MCU3V3IO_LDSW
	Fig	jure 6-15. TO_	RETENTION Sequence, I20	C6 = 0 and I20	C7 = 0

7 Additional Resources

For additional information regarding the PMIC or processor devices, use Table 7-1 for helpful resources:

Title	Document Type	Devices	Link	
TPS6594-Q1 Power Management IC (PMIC) for Processors with 5 Bucks and 4 LDOs	Datasheet	TPS6594-Q1	Link	
LP8764-Q1 Four Phase, 20-A Buck Converter with Integrated Switches	Datasheet	LP8764-Q1	Request through mySecure	
Jacinto [™] DRA821 Automotive Processors Silicon Revision 1.0	Datasheet	DRA821	Request through mySecure	
TPS6594-Q1 Safety Manual	Safety Manual	TPS6594-Q1	Request through mySecure	
LP8764-Q1 Safety Manual	Safety Manual	LP8764-Q1	Request through mySecure	
DRA821 Safety Manual Jacinto™ 7 Processors	Safety Manual	DRA821	Request through mySecure	
TPS6594-Q1 Schematic PCB Checklist	Application Note	TPS6594-Q1	Link	

Table 7-1. Additional Documents

STANDARD TERMS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
- 3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

- 3.3 Japan
 - 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
 - 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて

いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 EVM Use Restrictions and Warnings:

- 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
- 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
- 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and handling and use of the EVM by User or its employees, and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
- 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
- 6. Disclaimers:
 - 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
 - 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

www.ti.com

- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated