
Application Report
Daisy Chain Implementation for Serial Peripheral Interface

Ishtiaque Amin Brushed DC and Stepper Motors
James Lockridge

ABSTRACT

Embedded and electronic systems use serial interfaces to transfer data between connected devices. Serial
peripheral interface (SPI) is one type of serial communication interface that provides synchronous transfer of
data between a microcontroller (MCU), and one or more peripheral devices. In the SPI protocol, the MCU
generates a clock signal (SCLK), a select signal (nSCS), and a serial data out (SDO) signal (e.g. data
transferred to the peripheral devices). The peripheral devices receive the data signal on the serial data input
(SDI) pin. The data from signal from the MCU SDO to the peripheral SDI synchronizes with the clock signal
while the select signal is active. The peripheral devices may also send data back to the MCU on their own
SDO outputs to the SDI of the MCU. This output from the peripheral devices also synchronizes with the clock
signal. SPI is a common form of interface in automotive applications for better flexibility, configurability, and fault
reporting by the electronic components. This report describes the method for synchronous serial communication
to multiple peripheral devices (motor driver devices for example) using SPI with daisy chain functionality.

1 Trademarks
All trademarks are the property of their respective owners.

Table of Contents
1 Trademarks..1
2 Functional Overview...2
3 Implementation Details...3
4 Application Examples...6
5 Summary... 9
6 Glossary.. 10

6.1 Nomenclature Used in this Document..10

List of Figures
Figure 2-1. Three Motor Driver Devices Connected in Daisy Chain..2
Figure 3-1. SPI Frame With Three Motor Driver (Peripheral) Devices.. 3
Figure 3-2. Header Bytes...3
Figure 3-3. Contents of Header, Status, Address, and Data Bytes... 4
Figure 3-4. SPI Data Sequence between MCU and Three Motor Driver Devices... 5
Figure 4-1. SPI Daisy Chain Implementation Example for 20 Devices..6
Figure 4-2. SPI Daisy Chain Data Frame for 20 Devices.. 6
Figure 4-3. SPI Daisy Chain Block Diagram for 63 Devices..7
Figure 4-4. SPI Daisy Chain Data Frame for 63 Devices.. 7
Figure 4-5. SPI Frame Timing Diagram from DRV8889-Q1 Datasheet...8
Figure 4-6. SPI Block Diagram for Controlling More Than 63 Devices..8

www.ti.com Trademarks

SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Daisy Chain Implementation for Serial Peripheral Interface 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

2 Functional Overview
Figure 2-1 shows daisy chain configuration to keep GPIO ports available when multiple devices are
communicating to the same MCU by sharing the SPI bus. The MCU must be configured to generate a chip
select signal, a header signal, and multiple address fields depending on the number of devices connected in
series. In addition, the MCU generates a clock signal that allows the data to be synchronously transmitted
through the chain. From Figure 2-1 the MCU sends out a signal via SDI1 which gets decoded by each device in
the chain, and the appropriate commands are executed. Details about the decoding method is described herein.

Microcontroller

(MCU)

Peripheral

Device (1)
Peripheral

Device (2)

Peripheral

Device (3)
SDI1 SDO1 / SDI2 SDO1 / SDI2 SDO3

MCU-SDO

MCU-nSCS

MCU-SCLK

MCU-SDI

Figure 2-1. Three Motor Driver Devices Connected in Daisy Chain

The chip select signal (MCU-nSCS) defines a frame interval for provision to the motor driver devices. The clock
signal is to control synchronous transfer of serial data between the MCU and the motor driver devices. The
MCU-SDO is the data being sent from the MCU to the first motor driver device in the chain, and M-SDI is the
data being received from the last motor driver device in the chain. The MCU-SDO consists of the header bytes,
address bytes, and data bytes. The MCU-SDI, generated by the last motor driver device in the chain, consists of
status bytes, header bytes (same as MCU-SDO), and report bytes.

From MCU to the motor driver devices, the header field is the first field to be transmitted in the frame interval,
and specifies a number of peripheral devices communicatively coupled to the MCU. The header field is followed
by address fields. The multiple address fields are to be transmitted in the frame interval. Each of the address
fields corresponds to a different motor driver device. A first of the address fields transmitted by the MCU in
the frame interval corresponds to the last motor driver device to receive the header field, and vice versa. The
address fields are followed by data fields which carry the information to be executed in a given motor driver
device.

Functional Overview www.ti.com

2 Daisy Chain Implementation for Serial Peripheral Interface SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

3 Implementation Details
The traditional daisy chain configuration allows for a reduced number of terminals on the microcontroller, but
limits communication bandwidth. For example, in some implementations, two transactions (two communication
frames) are required to read from a peripheral device. In systems that allow single frame reads, transfer speed
of information through the serially connected peripheral devices is reduced as the number of peripheral devices
increases.

The synchronous serial communication system described here employs the daisy chain configuration to reduce
the number of terminals required on the microcontroller, allows reads in a single frame, and provides a transfer
bit rate that is independent of the number of peripheral devices in the chain. Some implementations provide
operation with a single peripheral device without introducing additional protocol overhead.

Figure 2-1 shows a block diagram of an example of a synchronous serial communication system in accordance
with the daisy chain implementation described in this section. The SPI system includes a MCU and one or more
motor driver devices in series to communicate with the MCU.

For example, the MCU outputs data signal and the first motor driver device in the chain receives the data signal
(SDI1). After performing any relevant operation, it passes along the outputs signal SDO1/SDI2, which includes
a portion of the data provided via SDI1. The same sequencing is repeated throughout the entire chain until the
final motor driver device is reached.

HDR1 HDR2 A3 A2 A1 D3 D2 D1
SDI1

nSCS

S3 S2 S1 HDR1 HDR2 R3 R2 R1
SDO3

S1 HDR1 HDR2 A3 A2 R1 D3 D2
SDO1 / SDI2

S2 S1 HDR1 HDR2 A3 R2 R1 D3
SDO2 / SDI3

All Address bytes

reach destination

All Data bytes

reach destination

Reads executed here Writes executed hereStatus response here

Figure 3-1. SPI Frame With Three Motor Driver (Peripheral) Devices

Figure 3-1 shows the data transmit and receive structure between the MCU and three motor driver devices. The
first device in the chain receives data from the MCU in the following format for 3-device configuration: 2 bytes
of header (HDRx) followed by 3 bytes of address (Ax) followed by 3 bytes of data (Dx). After the data has been
transmitted through the chain, the MCU receives the data string in the following format for 3-device configuration:
3 bytes of status (Sx) followed by 2 bytes of header followed by 3 bytes of report (Rx).

HDR 1 HDR 2

1 0 N5 N4 N3 N2 N1 N0 1 0 CLR x x x x x

No. of devices in the chain

(up to 26 ± 1= 63)

1 = global FAULT clear

0 = GRQ¶W�FDUH

'RQ¶W�FDUH

Figure 3-2. Header Bytes

www.ti.com Implementation Details

SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Daisy Chain Implementation for Serial Peripheral Interface 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

The header bytes (HDRx), shown in Figure 3-2 contain information of the number of devices connected in the
chain, and a global clear fault command that will clear the fault registers of all the devices on the rising edge of
the chip select (nSCS) signal. Header bytes must start with 1 and 0 for the two MSBs. The header identification
value is disposed at the start of the header field and is therefore the first value transmitted by the MCU that
is received by each of the motor driver devices in a sequence determined by its position in the chain. Header
values N5 through N0 are 6 bits dedicated to show the number of devices in the chain. Up to 63 devices can be
connected in series for each daisy chain connection. The 5 LSBs of the HDR2 register are don’t care bits that
can be used by the MCU to determine integrity of the daisy chain connection.

The address field (Ax) is an implementation of the address field from the MCU that needs to be accessed for
a particular motor driver device. The address field includes an identification value of 0 that identifies that byte
as an address field. It also includes a read/write control value (R/W bit) and an address value in the byte. The
identification value specifies whether a location of the motor driver device corresponding to the address value is
to be read or written. For example, if the R/W bit is set to logic 1, then the address corresponding address value
is to be read. If the R/W bit is a logic 0, then the address corresponding to the address value will be written with
the data in the data field.

The data field (Dx) specifies a value to be written at the address value of the motor driver device. For example,
a motor driver device writes the value contained in the data field to the address specified in the address field
corresponding to the motor driver device at the termination of the frame in which the data field is received.

Header Bytes

(HDRx)

Status Byte

(Sx)

1 0 N5 N4 N3 N2 N1 N0

Data Byte

(Dx)

Address Byte

(Ax)

1 0 CLR X X X X X

1 1 OTW UVLO CPUV OCP TSD OLD

D7 D6 D5 D4 D3 D2 D1 D0

0 R/W A4 A3 A2 A1 A0 X

Figure 3-3. Contents of Header, Status, Address, and Data Bytes

When the chip-select signal is active, the motor driver devices begin to receive clock signal, and at each clock
pulse, the motor driver devices transmit a status value. For example, while the motor driver device is receiving
the header field, it is transmitting a status bits that provide information about the fault status register for each
device in the daisy chain so that the MCU does not have to re-initiate another read command to read the fault
status from a given motor driver device. This reduces the number of read commands from the MCU and makes
the system more efficient to determining fault conditions flagged by a device.

The status field includes an identification value and a status value. The identification value must start with 1 and
1 for the two MSBs. The status field contains global fault bit identification for the motor driver device from which
the status byte was generated. In Figure 3-3 the global fault bits shown refer to the DRV8873-Q1 device as an
example. These six global fault bits, following the two identification bits, can vary depending on the motor driver
device.

When data passes through a device, it determines the position of itself in the chain by counting the number of
total bytes it receives followed by the first header byte. For example, in this 3-device configuration, device 2 in
the chain receives two status bytes before receiving the HDR1 byte which is then followed by the HDR2 byte.
From the two status bytes, the motor driver device can determine that its position is second in the chain. From
the HDR2 byte, each device can determine how many devices are connected in the chain. In this way, the data
only loads the relevant address and data byte in its buffer and bypasses the other bits. This protocol allows for
faster communication without adding latency to the system for up to 63 devices in the chain. Figure 3-3 shows
the encoding of a status byte.

Implementation Details www.ti.com

4 Daisy Chain Implementation for Serial Peripheral Interface SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLVSDY7
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

HDR1 HDR2 A3 A2 A1 D3 D2 D1

SDI

nSCS

S3 S2 S1 HDR1 HDR2 R3 R2 R1

SDO

Figure 3-4. SPI Data Sequence between MCU and Three Motor Driver Devices

Figure 3-4 shows how the data sequence should look like between the MCU and motor driver devices for three
peripheral units connected in the chain. The number of header bytes will always remain 2, but the other bytes
(status, address, data, and report) will scale according to the number of devices in series. Such a daisy chain
configuration also allows the MCU to control two or more motor driver devices without having to change the
SDI data structure. If the MCU controls only one device in the chain, then the header bytes and the daisy chain
configuration is not needed. The specific device datasheet describes the application case for communicating
with a single peripheral device.

www.ti.com Implementation Details

SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Daisy Chain Implementation for Serial Peripheral Interface 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

4 Application Examples
The following section contains additional application examples for using the daisy chain configuration. The list
below overviews some key points to consider during the system design:

• The entire chain of devices must be written or read for each SPI transaction.
• The HDRx bytes must always contain the total number of devices in the chain. Each device counts the

number of clock cycles until it receives the header byte. This is how each device finds the number of devices
in the chain and its relative location.

• Only one register per device may be read or written per SPI transaction.

Writing Devices Mid-Chain

In this example, there are 20 devices in the chain, but the microcontroller only needs to write to the 10th device
as shown in Figure 4-1.

Microcontroller

(MCU)

Peripheral

Device (1)
Peripheral

Device (10)

Peripheral

Device (20)

MCU-SDO

MCU-nSCS

MCU-SCLK

MCU-SDI

... ...

Figure 4-1. SPI Daisy Chain Implementation Example for 20 Devices

If no other devices need to update, then the R/W bit in the address bytes (A1-A9 and A11-A20) can be set to
“read.” The R/W bit of A10 will be set to “write.” Each transaction will only write one register in device 10 as
selected by the A10 byte. The data written to that address location is sent in the D10 byte. If the microcontroller
needs to update multiple addresses in device 10, it will need to send the entire SPI transaction for each
additional address update. Figure 4-2 shows an example of the SPI transaction for each address write to device
10.

MCU-SDO

nSCS

MCU-SDI
R1R20 R19...R11 R10 R9...R2S18 S17...S11 S10 S9...S1S20 S19

HDR1 HDR2 A20 A19...A11 A10 A1A9...A3 D20 D19...D11 D10 D1D9...D2

HDR2

A2

HDR1

Figure 4-2. SPI Daisy Chain Data Frame for 20 Devices

The microcontroller can read or write one register in each device per SPI transaction. If multiple devices need
updating, then the microcontroller can set the R/W bits in those addresses to “write.”

Length of Time for Each SPI Transaction

Sometimes SPI transaction time can be a critical constraint in an application with a long daisy chain. This section
calculates the amount of time needed for each transaction. Figure 4-3 shows a block diagram for this application
example. Table 4-1 shows example application constraints. Figure 4-4 shows the SPI transaction data frame for
this example.

Application Examples www.ti.com

6 Daisy Chain Implementation for Serial Peripheral Interface SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

Microcontroller

(MCU)

Peripheral

Device (1)

Peripheral

Device (63)

MCU-SDO

MCU-nSCS

MCU-SCLK

MCU-SDI

...

Figure 4-3. SPI Daisy Chain Block Diagram for 63 Devices

Table 4-1. Parameters for SPI Timing Calculation
Parameter Description Example value

Ndevices Number of devices 63

fCLK SPI clock frequency 5 MHz (bits/second)

MCU-SDO

nSCS

MCU-SDI
R1R63 R62...R2S61 S60..S1S63 S62

HDR1 HDR2 A63 A62...A3 A1 D63 D62...D2 D1

HDR2

A2

HDR1

Figure 4-4. SPI Daisy Chain Data Frame for 63 Devices

Transmitting the bytes in the SPI frames takes the most time in the SPI transaction. Equation 1 calculates the
total number of bits in each SPI transaction. Equation 2 calculates the total amount of time needed for all of the
data in the chain. Equation 2 should be sufficient for most SPI timing calculations.

Nbits = NHDR1 + NHDR2 + NADDRESSES + NDATA = 8 + 8 + 8*Ndevices + 8*Ndevices = 16 + 16*63 = 1,024 bits (1)

tbits = Nbits / fCLK = Nbits*(t(CLKH) + t(CLKL)) = 1,024 bits / 5 MHz = 0.2048 ms (2)

Equation 3 calculates the full timing required for each SPI frame, including the initial nSCS setup time (tsu(nSCS))
and final nSCS hold time (th(nSCS)). Figure 4-5 shows additional SPI timing parameters required by the SPI logic.
The specific numbers in the equation are example values. Specific values depend on the particular peripheral
device and can be found in the device datasheet.

tSPI_FRAME = tbits + tsu(nSCS) + th(nSCS) = 0.2048 ms + 100 ns + 100 ns = 0.2050 ms (3)

If multiple SPI frames need to be written in quick succession, t(HI_nSCS) and tdis(nSCS) must be observed between
each frame. Equation 4 calculates the full timing for each SPI transaction.

tSPI_TRANSACTION = tSPI_FRAME + t(HI_nSCS) + tdis(nSCS) = 0.2050 ms + 600 ns + 30 ns = 0.20563 ms (4)

www.ti.com Application Examples

SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Daisy Chain Implementation for Serial Peripheral Interface 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

Figure 4-5. SPI Frame Timing Diagram from DRV8889-Q1 Datasheet

Controlling More Than 63 Devices

To control more than 63 devices, the microcontroller will need separate GPIO for multiple nSCS lines. This
allows the controller to support multiple daisy chains while minimizing overall GPIO pins needed for SPI
communication. Figure 4 shows this. To communicate with a specific chain, that particular nSCS signal must
be pulled low while the others remain high. Figure 4-6 shows an example of this.

Microcontroller

(MCU)

Peripheral

Device (1)

Peripheral

Device (63)

SDO

nSCS_1

SCLK

SDI

...

Peripheral

Device (1)

Peripheral

Device (63)

...

Peripheral

Device (1)

Peripheral

Device (63)

...

nSCS_2

nSCS_3

Figure 4-6. SPI Block Diagram for Controlling More Than 63 Devices

Application Examples www.ti.com

8 Daisy Chain Implementation for Serial Peripheral Interface SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

5 Summary
There are certain advantages of implementing daisy chain as described in this report. They include:
• Speed: Large number of SPI peripheral devices (up to 63) can be connected on a single SPI bus without

having to reduce frequency of the SPI transaction.
• Same-frame response: For both read and write commands, each motor drive device responds on its SDO

line (MCU-SDI line) with the current data at the given register address. This allows each device to update the
MCU without needing additional read transactions.

• Robustness: Header bytes sent by the microcontroller return back to the microcontroller after going through
the entire chain. This allows the microcontroller to continuously check for integrity of the chain connection.

Refer to the following datasheets for more information.

• DRV8873-Q1 Automotive H-Bridge Motor Driver data sheet
• DRV89xx-Q1 Automotive Multi-Channel Half-Bridge Drivers with Advanced Diagnostics data sheet
• DRV8889-Q1, DRV8889A-Q1 Automotive Stepper Driver with Integrated Current Sense, 1/256 Micro-

Stepping, and Stall Detection data sheet
• DRV8899-Q1 Automotive Stepper Driver with Integrated Current Sense and 1/256 Micro-Stepping data sheet
• DRV8434S Stepper Driver With Integrated Current Sense, 1/256 Microstepping, SPI Interface, Smart Tune

Technology and Stall Detection data sheet

www.ti.com Summary

SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Daisy Chain Implementation for Serial Peripheral Interface 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLVSDY7
https://www.ti.com/lit/pdf/SLVSEC9
https://www.ti.com/lit/pdf/SLVSEE9
https://www.ti.com/lit/pdf/SLVSEE9
https://www.ti.com/lit/pdf/SLVSEE8
https://www.ti.com/lit/pdf/SLOSE70
https://www.ti.com/lit/pdf/SLOSE70
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

6 Glossary
6.1 Nomenclature Used in this Document
The following acronyms and initialisms are used in ths document:

MCU Microcontroller unit
SPI Serial peripheral Interface
MSB Most significant bit
LSB Least significant bit
SDO Serial data out
SDI Serial data in
GPIO General purpose input-output

For a more comprehensive list of terms, acronyms, and definitions, refer to the TI Glossary.

Glossary www.ti.com

10 Daisy Chain Implementation for Serial Peripheral Interface SLVAE25A – AUGUST 2018 – REVISED APRIL 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLYZ022
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE25A&partnum=DRV8873-Q1

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	1 Trademarks
	Table of Contents
	2 Functional Overview
	3 Implementation Details
	4 Application Examples
	5 Summary
	6 Glossary
	6.1 Nomenclature Used in this Document

