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ABSTRACT
This application report describes how C and assembler code can be used together in an application that
uses an MSP430™ microcontroller (MCU). The combination of C and assembler benefits the designer,
because it can provide the power of a high-level language and the speed, efficiency, and low-level control
of assembler.

Source code for the examples that are described in this application report can be downloaded from
www.ti.com/lit/zip/slaa140.
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1 Definition of the C-Compiler for Passing Variables Between Functions

1.1 Stack Frames and Parameter Passing
Each function call creates a stack frame (see Figure 1).

Figure 1. Parameter Passing From C

The parameters of a called function are passed to an assembler routine in a right-to-left order. The two
leftmost parameters are passed in registers unless they are defined as a struct or union type, in which
case they are also passed on the stack. The remaining parameters are always passed on the stack. See
the following example of a call:
f(w,x,y,z)

1.2 Calling Convention – Register Use With the IAR C-Compiler
The compiler uses two groups of processor registers.
• The scratch registers R12 to R15 are used for parameter passing and are not normally preserved

across the call. If R8 to R11 are used to hold a 64-bit parameter, these registers are also not
preserved.

• The other general-purpose registers, R4 to R11, are mainly used for register variables and temporary
results and must be preserved across a call. Within C this is handled automatically.

NOTE: The –ur45 or --lock_r4 and --lock_r5 option prevents the compiler from using registers R4
and R5.

Table 1. Location of Passed Parameters

Argument 8-Bit or 16-Bit Type 32-Bit Type 64-Bit Type Struct or Union
4th (z) R15 On the stack On the stack On the stack
3th (y) R14 On the stack On the stack On the stack
2nd (x) R13 R15:R14 R11:R10:R8:R8 On the stack
1st (w) R12 R12:R13 R15:R14:R13:R12 On the stack
Result R12 R12:R13 R15:R14:R13:R12 On the stack

NOTE: IAR also support an older calling convention (version 1). For details, refer to the IAR C
Compiler documentation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA140A
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1.3 Calling Convention – Register Use With the CCS C-Compiler
The compiler uses two groups of processor registers.
• The scratch registers R11 to R15 are used for parameter passing and are not normally preserved

across the call.
• The other general-purpose registers, R4 to R10, are mainly used for register variables and temporary

results and must be preserved across a call. Within C, this is handled automatically.

NOTE: The --global_register=r4 and --global_register=r5 options prevent the compiler from using
registers R4 and R5, respectively.

Table 2. Location of Passed Parameters

Argument 8-Bit or 16-Bit Type 32-Bit Type 64-Bit Type Struct or Union
4th (z) R15 On the stack On the stack Depends on size
3th (y) R14 On the stack On the stack Depends on size
2nd (x) R13 R15:R14 On the stack Depends on size
1st (w) R12 R12:R13 R15:R14:R13:R12 Depends on size
Result R12 R12:R13 R15:R14:R13:R12 Depends on size

Also see the Function Structure and Calling Conventions section of MSP430 Optimizing C/C++ Compiler.

1.4 Interrupt Functions
Interrupt functions written in C automatically preserve the scratch registers, SR (status register), and the
following registers:

IAR: R4 to R11
CCS: R4 to R10

The status register is saved as part of the interrupt calling process. Any registers used by the routine are
then saved using push Rxx instructions. On exit, these registers are recovered using pop Rxx
instructions, and the RETI instruction is used to reload the status register and return from the interrupt.

Functions written in assembler must explicitly manage these saves and restores.

2 Requirements of Assembler Routines to Support Calls From C
An assembler routine that is to be called from C must:
• Conform to the calling convention described above.
• Have a PUBLIC entry-point label.
• Be declared as external before any call, to allow type checking and optional promotion of parameters,

as in extern int foo() or extern int foo(int i, int j).

2.1 Local Storage Allocation
If the routine needs local storage, the routine allocates the storage in the following ways:
• On the hardware stack
• In static workspace (if the routine is not required to be simultaneously reusable (re-entrant))

IAR: Functions can always use R12 to R15 without saving them and R6 to R11 if they are pushed before
use. R4 and R5 must not be used for ROM monitor compatible code. If the C code is compiled with the
‑ur45 option, but the application is not to run in the ROM monitor, then it is possible to use R4 and R5 in
the assembler routine without saving them, because the C code never uses them.

CCS: Functions can always use R12 to R15 without saving them and R6 to R11 if they are pushed before
use. R4 and R5 must not be used for ROM monitor compatible code.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA140A
http://www.ti.com/lit/pdf/slau132


Requirements of Assembler Routines to Support Calls From C www.ti.com

4 SLAA140A–February 2002–Revised August 2018
Submit Documentation Feedback

Copyright © 2002–2018, Texas Instruments Incorporated

Mixing C and Assembler With MSP430™ MCUs

2.2 Interrupt Functions
The calling convention cannot be used for interrupt functions, because the interrupt may occur during the
calling of a foreground function. The requirements for an interrupt function routine are different from those
of a normal function routine as follows:
• The routine must preserve all used registers, including scratch registers R12 to R15.
• The routine must exit using RETI.
• The routine must treat all flags (Carry, Negative, Zero, and Overflow) of the Status register as

undefined.

2.3 Define Interrupt Vectors
As an alternative to defining a C interrupt function in assembly language as described above, the user can
assemble an interrupt routine and install it directly in the interrupt vector.

The interrupt vectors are located in the INTVEC segment.

3 Combining C and Assembler Functions

3.1 General Basics
The mechanics to combine C and assembler functions are fairly straightforward. Basically C code that is in
.c files imports labels exported by the assembler files using the extern keyword. Assembler codes within
.s43 or .asm files export labels to the C code using the PUBLIC keyword. Assembler code import labels
exported by C code using the EXTERN keyword. No keyword is required to export C labels to assembler
code.

When the .c and .s43 or .asm files are written, they must be added to the project before the project is built.
See the .c, .s43, .asm, and project (.ewp or .project) example files included with this application report.
See the CCS and IAR documentation for a more complete description of this process.

3.2 Call Assembler Functions Without Parameters to Pass
If no parameters are passed between the C code and the assembler function, a simple call instruction can
be used. See the Example 1 code.

3.3 Call Assembler Functions With Parameters to Pass
To pass parameters from C to the assembler function, the parameters must be located as described in the
Stack Frames and Parameter Passing section.

The Example 2 code shows how parameters are passed between the C main program and an assembler
function.

3.4 Define an Interrupt Service Routine in Assembler
To optimize the interrupt service routine for speed, use assembler. See the Interrupt Functions section for
the requirements of an assembler interrupt service routine.

The Example 4 code shows a watchdog interrupt service routine written in assembler that is used from a
C program.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA140A
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3.5 Define an Interrupt Service Routine for Special Interrupts
Some modules (for example, Timer_A, Timer_B, and ADC12) use a special combination of hardware and
software to detect the source of an individual interrupt. For additional information, see the family user's
guide:
• MSP430x1xx Family User’s Guide
• MSP430x4xx Family User’s Guide
• MSP430F5xx and MSP430F6xx Family User's Guide
• MSP430FR4xx and MSP430FR2xx Family User's Guide
• MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide

The interrupt service routine for these modules sometimes needs to be written in assembler. The
Example 5 code shows how this can be done.

3.6 Call C Functions from Assembler
An application can also call a C function from an assembler routine. The same restrictions described in
Section 1 apply.
In the Example 3 code, the assembler program calls the C function rand().

3.7 Exit Low-Power Mode While in the Interrupt Service Routine
During an interrupt service routine, the status register and the return address are stored on the stack (see
the family user’s guide for more detailed information). To set the CPU to active mode after returning from
the interrupt service routine, modify the value of the status register on the stack (specifically, clear the bits
that specify the low-power mode). From C, it is not possible to directly access the stack pointer, but the
intrinsic function __bic_SR_register_on_exit(bits) can modify the status register that is saved on
the stack.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA140A
http://www.ti.com/lit/pdf/SLAU012
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