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ABSTRACT
The MSP430FR698x Extended Scan Interface (ESI) uses two clock sources. These clocks are ACLK and
a high-frequency clock generated by the ESI oscillator, ESIOSC. ESIOSC is realized as an RC-oscillator
and shows a temperature and voltage dependency. However, a hardware-supported measurement of
ESIOSC frequency and adjustment by software allows compensating for the frequency drift. This
application report describes algorithms that enable initial ESIOSC frequency adjustments and compensate
for frequency drifts caused by temperature and voltage changes during runtime.
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1 Introduction
The Extended Scan Interface (ESI) is a peripheral module that performs user-defined measurement
sequences and processes the measurement results with a programmable state machine. For example, a
typical use case is rotation detection and rotation counting in applications like flow meters.

The ESI module consist of different blocks, and the most important is the timing state machine (TSM).
There are 32 TSM control registers that are sequentially processed when a start trigger is seen. All of
those control registers are identical, and their control bits define the settings for the analog front ends and
the time period of each TSM register in use. The time period definition is especially important, because it
allows adjustment of settle times or measurement interval times for the selected sensor solution. An
accurate setting of the time periods is necessary, because the minimum settle times should be met and
the time should not be too long because this increases the current consumption.

The time periods are defined with the TSM register by selecting a clock source, either ACLK or the high-
frequency clock ESIOSC, and the number of clock cycles of that clock. The ESIOSC source is mainly
chosen for precise settle time definition. For this reason, an accurate ESIOSC frequency is needed.

Hardware integrated in the ESI module allows measuring the ESIOSC frequency and adjusting it by
software. This allows an initial setting of ESIOSC after starting the application or an ESIOSC recalibration
during runtime.

The ESIOSC adjustment routine is executed only once after power-up, if the ESIOSC frequency drift
caused by temperature and supply voltage changes is acceptable. However, such a software routine can
also be periodically executed during the entire product lifetime. The period of running the calibration cycle
must be defined by the application requirements; for example, frequency accuracy when affected by
temperature changes and supply voltage changes.
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2 ESIOSC Frequency Measurement
The internal clock generator, ESIOSC, allows ESI to operate independent from the microcontroller's
SMCLK clock source. The frequency of the ESIOSC varies between individual units and drifts with
temperature and supply voltage. The six ESICLKFQx control bits in the ESIOSC control register are used
to adjust the ESIOSC frequency.

The ESIOSC frequency can be measured and adjusted by a software routine. The 8-bit wide counter
ESICNT3 is used for measurement. Setting the control bits ESIOSC.ESIHFSEL and
ESIOSC.ESICLKGON resets ESICNT3. Beginning with the second rising edge of ACLK, the ESIOSC
clock cycles are counted for one complete ACLK period. Reading ESICNT3 while this measurement is
ongoing always results in reading a 0x01. Therefore this is used as abort criteria in the code.

Figure 1 shows the measurement sequence. ESIOSC oscillator is off before the measurement starts.
Setting the ESIHFSEL and ESICLKGON bits causes the ESIOSC oscillator to start, thus clearing the
ESICNT3 counter, and starts the measurement one ACLK cycle later. The measurement itself, counts the
number of ESIOSC cycles, starts within one complete ACLK cycle.

Figure 1. ESIOSC Measurement Sequence Timing Diagram Example

3 ESIOSC Measurement and Adjustment Software Functions
The following functions are used for measurement and adjustment of ESIOSC frequency. These API
functions are derived from silicon test routines and may be used for reference.
• EsioscMeasure() function; measurement of ESIOSC frequency: This function measured the ESIOSC

frequency. This function is also used to check the ESIOSC frequency after running EsioscInit() or
EsioscReCal() functions.

• EsioscInit() function; adjustment of ESIOSC after power up: This function adjusts the ESIOSC
frequency close to the selected target frequency. It is used as an initial setup of ESIOSC oscillator.
This function has to be called only once. After calibration, the ESIOSC frequency may change due to
supply voltage and temperature dependency. If this frequency drift is acceptable, no further ESIOSC
adjustment is needed. In case, temperature and supply voltage drift should be compensated the
EsioscReCal() function may be used.

• EsioscReCal() function; adjustment of ESIOSC during runtime: This function is used for adjusting the
oscillator gradually during runtime. Instead of doing several measurements and step-by-step
adjustment of ESIOSC frequency, like it is done in the EsioscInit() function, the EsioscReCal() is doing
one measurement and one adjustment step then it returns to the caller. Adjusting the target frequency
setting may requires several calls. The return value of this function provides information to the caller
about the status of the calibration routine.
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ESICNT3 = 0x01?

Yes

No

Measure ESIOSC
unsigned char

EsioscMeasure (void)

ESIHFCLK = 1
ESICLKGON = 0      1

END
Return parameter: ESICNT3

ESIHFCLK = 1
ESICLKGON = 0

unsigned char EsioscMeasure()

{  unsigned int temp;

ESIOSC &= ~(ESICLKGON);

ESIOSC |= ESICLKGON + ESIHFSEL; // Start measurement

do{

temp = ESICNT3;             // Get counter value

} while(temp == 0x01);           // When measurement has not

// finished yet, ESICNT3 value

// is 0x01

ESIOSC &= ~(ESICLKGON); // Stop ESIOSC oscillator

return temp; // Return parameter is ESICNT3 counter value

}
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3.1 Measurement of ESIOSC Frequency
The measurement function uses the ESI hardware as described in Section 2. Figure 2 shows the flowchart
and the source code for ESIOSC frequency measurement.

Figure 2. Flowchart and Source Code for ESIOSC Frequency Measurement

The EsioscMeasure() function allows you to measure the ESIOSC frequency with an accuracy of typically
±1 count (ratio of ESIOSC/ACLK). External distortions, variations of the 32-kHz crystal oscillator
frequency, and voltage or temperature changes during measurement affect the measurement result.
Multiple function calls and averaging of the measurement results help to reduce the impact of sporadic
distortions and improve measurement accuracy. Example 1 invokes EsioscMeasure() multiple times.

The execution time of the EsioscMeasure() function depends on when the function is invoked relative to
the ACLK cycle. In the best case, EsioscMeasure() is invoked just before a rising ACLK edge, and the
function takes two ACLK cycles. When EsioscMeasure() is started after a rising ACLK edge, the function
takes three ACLK cycles.
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Example 1. Example Code for Using EsioscMeasure() Function

#include "MSP430.h"
#include "ESI_ESIOSC.h"
void main(void)
{ unsigned char temp;

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

// XT1 Setup
PJSEL0 |= BIT4 + BIT5;

CSCTL0_H = 0xA5;
CSCTL1 = DCOFSEL_0; // Set DCO= 1MHz
CSCTL2 = SELA__LFXTCLK + SELS__DCOCLK + SELM__DCOCLK;
CSCTL3 = DIVA__1 + DIVS__1 + DIVM__1; // set all dividers
CSCTL4 |= LFXTDRIVE_0;
CSCTL4 &= ~LFXTOFF;

do
{ CSCTL5 &= ~LFXTOFFG; // Clear XT1 fault flag
SFRIFG1 &= ~OFIFG;
} while (SFRIFG1&OFIFG); // Test oscillator fault flag

temp = EsioscMeasure(); // ESIOSC frequency is measured
temp = temp + EsioscMeasure(); // four times and average result
temp = temp + EsioscMeasure(); // is calculated afterwards.
temp = temp + EsioscMeasure(); //

temp = temp /4; // calculating average result

while(1); // entire loop
}
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3.2 Adjustment of ESIOSC After Power-Up
Figure 3 shows an adjustment algorithm that can be used for ESIOSC frequency adjustment after power-
up.

Figure 3. Flowchart for ESIOSC Adjustment After Power-On
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The adjustment function consists of two steps. The first measurement is used to find out if the ESIOSC
frequency is above or below the target frequency. Based on that determination, "v_adder" is set to -1 or
+1. This variable is later used as and adjustment value for the ESIOSC frequency.

The second step is a loop that is repeatedly executed until a minimum difference between target
frequency and ESIOSC frequency is found.

Note that EsioscInit() uses ACLK as reference clock. To ensure an accurate measurement it is important
that ACLK is stable before calling the function (a 32-kHz crystal may require hundreds of ms).

The EsioscInit() function uses the argument target. This argument allows definition of the frequency ratio
for adjustment. The adjusted ESIOSC frequency can be calculated with Equation 1:
ESIOSC frequency = target × fACLK (1)

Example for defining a target value:
fACLK = 32768 Hz, Required ESIOSC frequency = 4.8 MHz (2)

Transpose Equation 1 to calculate the target value:

(3)

target must be an integer value, and using 146 results in the following ESIOSC frequency:
ESIOSC frequency = 146 * 32768 Hz ≈ 4.78 MHz (4)

Checking for underflow and overflow can be done in software by checking the ESICLKFQx bits:
• (ESIOSC.ESICLKFQx AND 0x3F00) = 0x0000 → Underflow occurred
• (ESIOSC.ESICLKFQx AND 0x3F00) = 0x3F00 → Overflow occurred
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Example 2. Example Code for Using EsioscInit() Function

#include "MSP430.h"
#include "ESI_ESIOSC.h"
void main(void)
{ unsigned char temp;

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

// XT1 Setup
PJSEL0 |= BIT4 + BIT5;

CSCTL0_H = 0xA5;
CSCTL1 = DCOFSEL_0; // Set DCO= 1MHz
CSCTL2 = SELA__LFXTCLK + SELS__DCOCLK + SELM__DCOCLK;
CSCTL3 = DIVA__1 + DIVS__1 + DIVM__1; // set all dividers
CSCTL4 |= LFXTDRIVE_0;
CSCTL4 &= ~LFXTOFF;

do
{ CSCTL5 &= ~LFXTOFFG; // Clear XT1 fault flag

SFRIFG1 & ~OFIFG;
} while (SFRIFG1&OFIFG); // Test oscillator fault flag

EsioscInit(ESIOSC_Default); // default setting = 4.8MHz
if ((ESIOSC&0x3F00)==0x0000)

printf("Warning: Underflow happened!");
if ((ESIOSC&0x3F00)==0x3F00)

printf("Warning: Overflow happened!");

ESIOSC_Initialization; // initialize ESI and start operation
while(1); // entire loop

}

3.3 Adjustment of ESIOSC During Runtime
Recalibration during operation time helps to compensate for various aging effects of the sensors. However
recalibration of the ESIOSC oscillator must be avoided while a TSM measurement sequence is in
progress. To start recalibration, first synchronize with the end of a TSM sequence (by using ESIIFG1
interrupt).

The EsioscReCal() function described in this section does not use loops, the main software must call this
function several times before the final setting is stable. This approach results in short execution times of
the function to ensure completion before the next TSM measurement sequence starts.
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(unsigned char target)
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Figure 4 shows a flowchart of the EsioscReCal() function.

NOTE: v_status is a global variable that is initialized as 0.
Return values =

• 0xFF is used for underflow or overflow
• 0x01 is used for measurement not yet completed
• 0x00 is used for measurement is completed

Figure 4. Flowchart for ESIOSC Adjustment During Runtime

The target parameter in the EsioscReCal() function has the same functionality that it does in the
EsioscInit() function. Equation 1, Equation 2, Equation 3, and Equation 4 in Section 3.2 describe how this
parameter is defined.
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When the EsioscReCal() function is called the first time, v_status is 0. This causes the start of a new
adjustment sequence. When the function is called a second time, the v_status is 1, and the EsioscRecal()
function performs a further adjustment step and tunes ESIOSC accordingly. The global variable "v_status"
remains 1 as long the adjustment is in progress.

The execution time of the EsioscReCal() function varies with the exact moment in time the function is
invoked. This is because a synchronization to ACLK is done. The EsioscReCal() code shown in
Example 3 can take up to 150 MCLK cycles.

Example 3. Example Pseudo-Code for Using EsioscReCal() Function

#include "MSP430.h"
#include "ESI_ESIOSC.h"
void main(void)
{ BasicSetupOfMCU(); // for example, Stop watchdog timer

WaitTillAclkIsStable(); // XT1 setting and wait for 32kHz oscillator

EsioscInit(ESIOSC_Default); // default setting = 4.8MHz
if ((ESIOSC&0x3F00)==0x0000)

printf("Warning: Underflow happened!");
if ((ESIOSC&0x3F00)==0x3F00)

printf("Warning: Overflow happened!");

ESIOSC_Initialization(); // initialize ESI and start operation
while(1)
{ __bis_SR_register(LPM3_bits | GIE); } // entire loop: go to LPM3

}
void __InterruptServiceRoutine_ESI(void)
{ unsigned char RetVal;

if (ESIIFG1 & ESIINT2)
{ ESIINT2 &= ~ESIIFG1; // clear interrupt flag

RetVal = EsioscReCal(ESIOSC_Default); // default setting = 4.8MHz
if (RetVal == 0xFF)

printf("Warning: Underflow or Overflow happened!");
if (RetVal == 0x01)

printf("ESIOSC adjustment in progress. Further function calls needed.");
if (RetVal == 0x00)

printf("ESIOSC adjustment completed.");
}

4 References
• MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide

(SLAU367)
• MSP430FR698x(1), MSP430FR598x(1) Mixed-Signal Microcontrollers (SLAS789)
• MSP430FR688x(1), MSP430FR588x(1) Mixed-Signal Microcontrollers (SLASE32)
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Revision History

Changes from Original (December 2013) to A Revision ................................................................................................ Page
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• Changed from #include "MSP430FR6989.h" to #include "MSP430.h" in Example 1 ................................. 4
• Changed from #include "MSP430FR6989.h" to #include "MSP430.h" in Example 2........................... 7
• Changed from #include "MSP430FR6989.h" to #include "MSP430.h" in Example 3 ................................. 9
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