
Application Report
SLAA609A–September 2013–Revised January 2015

Adjustment of ESIOSC Oscillator Frequency

Christian Kurz, Johann Zipperer ... MSP430

ABSTRACT
The MSP430FR698x Extended Scan Interface (ESI) uses two clock sources. These clocks are ACLK and
a high-frequency clock generated by the ESI oscillator, ESIOSC. ESIOSC is realized as an RC-oscillator
and shows a temperature and voltage dependency. However, a hardware-supported measurement of
ESIOSC frequency and adjustment by software allows compensating for the frequency drift. This
application report describes algorithms that enable initial ESIOSC frequency adjustments and compensate
for frequency drifts caused by temperature and voltage changes during runtime.

Contents
1 Introduction ... 1
2 ESIOSC Frequency Measurement .. 2
3 ESIOSC Measurement and Adjustment Software Functions ... 2
4 References ... 9

List of Figures

1 ESIOSC Measurement Sequence Timing Diagram Example.. 2
2 Flowchart and Source Code for ESIOSC Frequency Measurement .. 3
3 Flowchart for ESIOSC Adjustment After Power-On ... 5
4 Flowchart for ESIOSC Adjustment During Runtime... 8

1 Introduction
The Extended Scan Interface (ESI) is a peripheral module that performs user-defined measurement
sequences and processes the measurement results with a programmable state machine. For example, a
typical use case is rotation detection and rotation counting in applications like flow meters.

The ESI module consist of different blocks, and the most important is the timing state machine (TSM).
There are 32 TSM control registers that are sequentially processed when a start trigger is seen. All of
those control registers are identical, and their control bits define the settings for the analog front ends and
the time period of each TSM register in use. The time period definition is especially important, because it
allows adjustment of settle times or measurement interval times for the selected sensor solution. An
accurate setting of the time periods is necessary, because the minimum settle times should be met and
the time should not be too long because this increases the current consumption.

The time periods are defined with the TSM register by selecting a clock source, either ACLK or the high-
frequency clock ESIOSC, and the number of clock cycles of that clock. The ESIOSC source is mainly
chosen for precise settle time definition. For this reason, an accurate ESIOSC frequency is needed.

Hardware integrated in the ESI module allows measuring the ESIOSC frequency and adjusting it by
software. This allows an initial setting of ESIOSC after starting the application or an ESIOSC recalibration
during runtime.

The ESIOSC adjustment routine is executed only once after power-up, if the ESIOSC frequency drift
caused by temperature and supply voltage changes is acceptable. However, such a software routine can
also be periodically executed during the entire product lifetime. The period of running the calibration cycle
must be defined by the application requirements; for example, frequency accuracy when affected by
temperature changes and supply voltage changes.

1SLAA609A–September 2013–Revised January 2015 Adjustment of ESIOSC Oscillator Frequency
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

ACLK

ESIOSC Out

ESIHFSEL

0

ESICLGKON

203

Setting these bits clears ESICNT3 and starts

measurement sequence

27ESICNT3
(ESI internal)

Reading
ESICNT3 203 271
Register

ton

1 2(32768Hz)

ESIOSC clocks are counted

261 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ESIOSC Frequency Measurement www.ti.com

2 ESIOSC Frequency Measurement
The internal clock generator, ESIOSC, allows ESI to operate independent from the microcontroller's
SMCLK clock source. The frequency of the ESIOSC varies between individual units and drifts with
temperature and supply voltage. The six ESICLKFQx control bits in the ESIOSC control register are used
to adjust the ESIOSC frequency.

The ESIOSC frequency can be measured and adjusted by a software routine. The 8-bit wide counter
ESICNT3 is used for measurement. Setting the control bits ESIOSC.ESIHFSEL and
ESIOSC.ESICLKGON resets ESICNT3. Beginning with the second rising edge of ACLK, the ESIOSC
clock cycles are counted for one complete ACLK period. Reading ESICNT3 while this measurement is
ongoing always results in reading a 0x01. Therefore this is used as abort criteria in the code.

Figure 1 shows the measurement sequence. ESIOSC oscillator is off before the measurement starts.
Setting the ESIHFSEL and ESICLKGON bits causes the ESIOSC oscillator to start, thus clearing the
ESICNT3 counter, and starts the measurement one ACLK cycle later. The measurement itself, counts the
number of ESIOSC cycles, starts within one complete ACLK cycle.

Figure 1. ESIOSC Measurement Sequence Timing Diagram Example

3 ESIOSC Measurement and Adjustment Software Functions
The following functions are used for measurement and adjustment of ESIOSC frequency. These API
functions are derived from silicon test routines and may be used for reference.
• EsioscMeasure() function; measurement of ESIOSC frequency: This function measured the ESIOSC

frequency. This function is also used to check the ESIOSC frequency after running EsioscInit() or
EsioscReCal() functions.

• EsioscInit() function; adjustment of ESIOSC after power up: This function adjusts the ESIOSC
frequency close to the selected target frequency. It is used as an initial setup of ESIOSC oscillator.
This function has to be called only once. After calibration, the ESIOSC frequency may change due to
supply voltage and temperature dependency. If this frequency drift is acceptable, no further ESIOSC
adjustment is needed. In case, temperature and supply voltage drift should be compensated the
EsioscReCal() function may be used.

• EsioscReCal() function; adjustment of ESIOSC during runtime: This function is used for adjusting the
oscillator gradually during runtime. Instead of doing several measurements and step-by-step
adjustment of ESIOSC frequency, like it is done in the EsioscInit() function, the EsioscReCal() is doing
one measurement and one adjustment step then it returns to the caller. Adjusting the target frequency
setting may requires several calls. The return value of this function provides information to the caller
about the status of the calibration routine.

2 Adjustment of ESIOSC Oscillator Frequency SLAA609A–September 2013–Revised January 2015
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

ESICNT3 = 0x01?

Yes

No

Measure ESIOSC
unsigned char

EsioscMeasure (void)

ESIHFCLK = 1
ESICLKGON = 0 1

END
Return parameter: ESICNT3

ESIHFCLK = 1
ESICLKGON = 0

unsigned char EsioscMeasure()

{ unsigned int temp;

ESIOSC &= ~(ESICLKGON);

ESIOSC |= ESICLKGON + ESIHFSEL; // Start measurement

do{

temp = ESICNT3; // Get counter value

} while(temp == 0x01); // When measurement has not

// finished yet, ESICNT3 value

// is 0x01

ESIOSC &= ~(ESICLKGON); // Stop ESIOSC oscillator

return temp; // Return parameter is ESICNT3 counter value

}

www.ti.com ESIOSC Measurement and Adjustment Software Functions

3.1 Measurement of ESIOSC Frequency
The measurement function uses the ESI hardware as described in Section 2. Figure 2 shows the flowchart
and the source code for ESIOSC frequency measurement.

Figure 2. Flowchart and Source Code for ESIOSC Frequency Measurement

The EsioscMeasure() function allows you to measure the ESIOSC frequency with an accuracy of typically
±1 count (ratio of ESIOSC/ACLK). External distortions, variations of the 32-kHz crystal oscillator
frequency, and voltage or temperature changes during measurement affect the measurement result.
Multiple function calls and averaging of the measurement results help to reduce the impact of sporadic
distortions and improve measurement accuracy. Example 1 invokes EsioscMeasure() multiple times.

The execution time of the EsioscMeasure() function depends on when the function is invoked relative to
the ACLK cycle. In the best case, EsioscMeasure() is invoked just before a rising ACLK edge, and the
function takes two ACLK cycles. When EsioscMeasure() is started after a rising ACLK edge, the function
takes three ACLK cycles.

3SLAA609A–September 2013–Revised January 2015 Adjustment of ESIOSC Oscillator Frequency
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

ESIOSC Measurement and Adjustment Software Functions www.ti.com

Example 1. Example Code for Using EsioscMeasure() Function

#include "MSP430.h"
#include "ESI_ESIOSC.h"
void main(void)
{ unsigned char temp;

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

// XT1 Setup
PJSEL0 |= BIT4 + BIT5;

CSCTL0_H = 0xA5;
CSCTL1 = DCOFSEL_0; // Set DCO= 1MHz
CSCTL2 = SELA__LFXTCLK + SELS__DCOCLK + SELM__DCOCLK;
CSCTL3 = DIVA__1 + DIVS__1 + DIVM__1; // set all dividers
CSCTL4 |= LFXTDRIVE_0;
CSCTL4 &= ~LFXTOFF;

do
{ CSCTL5 &= ~LFXTOFFG; // Clear XT1 fault flag
SFRIFG1 &= ~OFIFG;
} while (SFRIFG1&OFIFG); // Test oscillator fault flag

temp = EsioscMeasure(); // ESIOSC frequency is measured
temp = temp + EsioscMeasure(); // four times and average result
temp = temp + EsioscMeasure(); // is calculated afterwards.
temp = temp + EsioscMeasure(); //

temp = temp /4; // calculating average result

while(1); // entire loop
}

4 Adjustment of ESIOSC Oscillator Frequency SLAA609A–September 2013–Revised January 2015
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

ESICLKFQ = v_Setting

END

v_adder = -1 v_adder = +1

v_min = v_Delta?

ESICLKFQ = ESICLKGQ +

Measure ESIOSC

v_Delta = v_Measure -

target

Measure ESIOSC

Yes

No

Yes

v_adder

Yes

No

No

Measure ESIOSC

Adjust ESIOSC
void Esiosclnit (unsigned char

target)

based on first measurement
calculate ESIOSC settings

v_min = v_Measure – target
v_Setting = ESICLKFQx

First, the software tries to
calculate the theoretical
optimum ESIOSC setting

Then it checks if actual
ESIOSC frequency is higher
or lower than target
frequency.

Finally, in this loop the
software looks for the
minimum of the difference
of actual ESIOSC frequency
and target frequency.

v_Measure
> target?

v_Measure
> target?

Yes

No

v_min = v_Delta
v_Setting = ESICLKFQ

|v_Delta| <
|v_min| ?

www.ti.com ESIOSC Measurement and Adjustment Software Functions

3.2 Adjustment of ESIOSC After Power-Up
Figure 3 shows an adjustment algorithm that can be used for ESIOSC frequency adjustment after power-
up.

Figure 3. Flowchart for ESIOSC Adjustment After Power-On

5SLAA609A–September 2013–Revised January 2015 Adjustment of ESIOSC Oscillator Frequency
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

ESIOSC frequency 4.8 MHz
target = = 146.48

32768 Hz 32768Hz
=

ESIOSC Measurement and Adjustment Software Functions www.ti.com

The adjustment function consists of two steps. The first measurement is used to find out if the ESIOSC
frequency is above or below the target frequency. Based on that determination, "v_adder" is set to -1 or
+1. This variable is later used as and adjustment value for the ESIOSC frequency.

The second step is a loop that is repeatedly executed until a minimum difference between target
frequency and ESIOSC frequency is found.

Note that EsioscInit() uses ACLK as reference clock. To ensure an accurate measurement it is important
that ACLK is stable before calling the function (a 32-kHz crystal may require hundreds of ms).

The EsioscInit() function uses the argument target. This argument allows definition of the frequency ratio
for adjustment. The adjusted ESIOSC frequency can be calculated with Equation 1:
ESIOSC frequency = target × fACLK (1)

Example for defining a target value:
fACLK = 32768 Hz, Required ESIOSC frequency = 4.8 MHz (2)

Transpose Equation 1 to calculate the target value:

(3)

target must be an integer value, and using 146 results in the following ESIOSC frequency:
ESIOSC frequency = 146 * 32768 Hz ≈ 4.78 MHz (4)

Checking for underflow and overflow can be done in software by checking the ESICLKFQx bits:
• (ESIOSC.ESICLKFQx AND 0x3F00) = 0x0000 → Underflow occurred
• (ESIOSC.ESICLKFQx AND 0x3F00) = 0x3F00 → Overflow occurred

6 Adjustment of ESIOSC Oscillator Frequency SLAA609A–September 2013–Revised January 2015
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

www.ti.com ESIOSC Measurement and Adjustment Software Functions

Example 2. Example Code for Using EsioscInit() Function

#include "MSP430.h"
#include "ESI_ESIOSC.h"
void main(void)
{ unsigned char temp;

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

// XT1 Setup
PJSEL0 |= BIT4 + BIT5;

CSCTL0_H = 0xA5;
CSCTL1 = DCOFSEL_0; // Set DCO= 1MHz
CSCTL2 = SELA__LFXTCLK + SELS__DCOCLK + SELM__DCOCLK;
CSCTL3 = DIVA__1 + DIVS__1 + DIVM__1; // set all dividers
CSCTL4 |= LFXTDRIVE_0;
CSCTL4 &= ~LFXTOFF;

do
{ CSCTL5 &= ~LFXTOFFG; // Clear XT1 fault flag

SFRIFG1 & ~OFIFG;
} while (SFRIFG1&OFIFG); // Test oscillator fault flag

EsioscInit(ESIOSC_Default); // default setting = 4.8MHz
if ((ESIOSC&0x3F00)==0x0000)

printf("Warning: Underflow happened!");
if ((ESIOSC&0x3F00)==0x3F00)

printf("Warning: Overflow happened!");

ESIOSC_Initialization; // initialize ESI and start operation
while(1); // entire loop

}

3.3 Adjustment of ESIOSC During Runtime
Recalibration during operation time helps to compensate for various aging effects of the sensors. However
recalibration of the ESIOSC oscillator must be avoided while a TSM measurement sequence is in
progress. To start recalibration, first synchronize with the end of a TSM sequence (by using ESIIFG1
interrupt).

The EsioscReCal() function described in this section does not use loops, the main software must call this
function several times before the final setting is stable. This approach results in short execution times of
the function to ensure completion before the next TSM measurement sequence starts.

7SLAA609A–September 2013–Revised January 2015 Adjustment of ESIOSC Oscillator Frequency
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

Measure ESIOSC

v_adder = -1 v_adder = +1

END

v_min = v_Delta

Return Value = 0xFF 0x01 0x00

v_status = 1

ESICLKFQx = v_Setting

v_status = 0

v_status = 0? v_status = 1?

v_Measure
> target?

v_Measure
> target?

|v_Delta| <
|v_min| ?

v_Setting = ESICLKFQx bits

v_Setting =
0x00 or 0x3F?

ESICLKFQx = ESICLKFQx +
v_adder

No

YesNo No

No

YesYes

Yes

No

Yes

Adjust ESIOSC
void EsioscReCal

(unsigned char target)

v_Delta = v_Measure - target

ESIOSC Measurement and Adjustment Software Functions www.ti.com

Figure 4 shows a flowchart of the EsioscReCal() function.

NOTE: v_status is a global variable that is initialized as 0.
Return values =

• 0xFF is used for underflow or overflow
• 0x01 is used for measurement not yet completed
• 0x00 is used for measurement is completed

Figure 4. Flowchart for ESIOSC Adjustment During Runtime

The target parameter in the EsioscReCal() function has the same functionality that it does in the
EsioscInit() function. Equation 1, Equation 2, Equation 3, and Equation 4 in Section 3.2 describe how this
parameter is defined.

8 Adjustment of ESIOSC Oscillator Frequency SLAA609A–September 2013–Revised January 2015
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

www.ti.com References

When the EsioscReCal() function is called the first time, v_status is 0. This causes the start of a new
adjustment sequence. When the function is called a second time, the v_status is 1, and the EsioscRecal()
function performs a further adjustment step and tunes ESIOSC accordingly. The global variable "v_status"
remains 1 as long the adjustment is in progress.

The execution time of the EsioscReCal() function varies with the exact moment in time the function is
invoked. This is because a synchronization to ACLK is done. The EsioscReCal() code shown in
Example 3 can take up to 150 MCLK cycles.

Example 3. Example Pseudo-Code for Using EsioscReCal() Function

#include "MSP430.h"
#include "ESI_ESIOSC.h"
void main(void)
{ BasicSetupOfMCU(); // for example, Stop watchdog timer

WaitTillAclkIsStable(); // XT1 setting and wait for 32kHz oscillator

EsioscInit(ESIOSC_Default); // default setting = 4.8MHz
if ((ESIOSC&0x3F00)==0x0000)

printf("Warning: Underflow happened!");
if ((ESIOSC&0x3F00)==0x3F00)

printf("Warning: Overflow happened!");

ESIOSC_Initialization(); // initialize ESI and start operation
while(1)
{ __bis_SR_register(LPM3_bits | GIE); } // entire loop: go to LPM3

}
void __InterruptServiceRoutine_ESI(void)
{ unsigned char RetVal;

if (ESIIFG1 & ESIINT2)
{ ESIINT2 &= ~ESIIFG1; // clear interrupt flag

RetVal = EsioscReCal(ESIOSC_Default); // default setting = 4.8MHz
if (RetVal == 0xFF)

printf("Warning: Underflow or Overflow happened!");
if (RetVal == 0x01)

printf("ESIOSC adjustment in progress. Further function calls needed.");
if (RetVal == 0x00)

printf("ESIOSC adjustment completed.");
}

4 References
• MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide

(SLAU367)
• MSP430FR698x(1), MSP430FR598x(1) Mixed-Signal Microcontrollers (SLAS789)
• MSP430FR688x(1), MSP430FR588x(1) Mixed-Signal Microcontrollers (SLASE32)

9SLAA609A–September 2013–Revised January 2015 Adjustment of ESIOSC Oscillator Frequency
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAS789
http://www.ti.com/lit/pdf/SLASE32
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

Revision History www.ti.com

Revision History

Changes from Original (December 2013) to A Revision .. Page

• Editorial changes throughout .. 1
• Changed from #include "MSP430FR6989.h" to #include "MSP430.h" in Example 1 4
• Changed from #include "MSP430FR6989.h" to #include "MSP430.h" in Example 2........................... 7
• Changed from #include "MSP430FR6989.h" to #include "MSP430.h" in Example 3 9
• Changed from { LPM3; } to __bis_SR_register(LPM3_bits | GIE); in Example 3 9

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

10 Revision History SLAA609A–September 2013–Revised January 2015
Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA609A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Adjustment of ESIOSC Oscillator Frequency
	1 Introduction
	2 ESIOSC Frequency Measurement
	3 ESIOSC Measurement and Adjustment Software Functions
	3.1 Measurement of ESIOSC Frequency
	3.2 Adjustment of ESIOSC After Power-Up
	3.3 Adjustment of ESIOSC During Runtime

	4 References

	Revision History
	Important Notice

