
Application Report
SPNA217–May 2015

Sine Wave Generation Using PWM With Hercules™ N2HET
and HTU

CharlesTsai

ABSTRACT
This application report illustrates how to generate sine waves using the versatile programmable high-end
timer (N2HET) and its companion data transfer unit (HTU). The code example can be run in either the
Hercules hardware development kit (HDK) or the LaunchPad™ development kit. The application report
shows the N2HET program examples, the steps to setting up the N2HET and HTU registers as well as
basic system settings utilizing the HalCoGen.

This document assumes that you have some basic understanding of the N2HET terms as well as some
understanding of both the HET integrated development environment (IDE) and HalCoGen tools.

Project collateral and source code discussed in this application can be downloaded from the following
URL: http://www.ti.com/lit/zip/spna217.

Contents
1 IntroductionF.. 2
2 Sine Wave Frequency Calculation .. 3
3 Low-Pass Filter (LPF) ... 6
4 N2HET Implementation ... 7
5 Host Side Setup.. 9
6 Examples .. 15
7 References .. 18

List of Figures

1 12 Sample Points Sine Wave With the Corresponding Modulated PWM .. 2
2 HTU Dataflow .. 3
3 Low-Pass Filter... 6
4 N2HET1 Sine Wave Flowchart... 7
5 Sine_Wave Project Directory Structure ... 15
6 A 305Hz Sine Wave ... 16
7 FFT Analysis of the Sine Wave .. 17

List of Tables

1 12-Sample Digitized Sine Table ... 3
2 Examples of Sine Wave Frequency (FO) vs. Different SINE_FREQ_DIVIDER and lr Prescaler With

VCLK2 = 90 MHz .. 6

Hercules, LaunchPad are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

1SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/lit/zip/spna217
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

100%

0%

N/2 N 2N3N/2

y

x

93.3%

75%

50%

25%

6.6%

PWM

duty 75% 93.3% 100% 93.3% 75% 50% 25% 6.6% 0.0% 6.6% 25% 50%

1 PWM

IntroductionF www.ti.com

1 IntroductionF
N2HET is a fifth-generation Texas Instruments (TI) advanced intelligent timer coprocessor module based
on the very long instruction word (VLIW) instruction set architecture. The instruction set, based mostly on
very simple, but comprehensive instructions provides sophisticated timing functions for real-time
applications. The high resolution hardware channels allow greater accuracy for widely used timing
functions such as pulse width modulation (PWM) generation. In the microcontroller, there is also the
dedicated High End Timer Transfer Unit (HTU) that moves data efficiently between the N2HET RAM and
the system RAM. The purpose of this application report is to illustrate how to use the N2HET coupled with
the HTU to create a sine wave in an efficient manner without CPU's intervention.

1.1 Sine Wave and PWM Overview
Pulse Width Modulation (PWM) is a method of encoding a voltage onto a fixed frequency carrier wave.
The frequency of the PWM will be fixed while the duty cycle will vary between 0% and 100%. The
percentage of the on-time will be proportional to the output signal voltage. For example, a 0% duty cycle
produces a 0 V output while a 100% duty cycle produces a peak-to-peak voltage Vp-p equal to the Vccio,
which is the I/O supply voltage to the microcontroller. The nominal Vccio is 3.3 V in Hercules
microcontrollers. A 50% duty cycle would have produced an output voltage equal to 1.65 V. The PWM
method is a low cost way of implementing a digital-to-analog converter (DAC). By time-varying the duty
cycle percentage, a sine waveform can be generated.

The basic idea of generating a sine waveform using the PWM method is to first digitize the sine wave and
encode the duty cycle corresponding to each sample point, see Figure 1. In Figure 1 the sine wave is
digitized over 12 sample points. 12 samples means that each sample is taken at a angular step of 30o of a
circle. The sine value of each sample and its corresponding duty cycle is shown in Table 1.

Figure 1. 12 Sample Points Sine Wave With the Corresponding Modulated PWM

2 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

FPWMFO
samples

=

N2HET

N2HET RAM

SINE Look

Up Table

System RAM

DMA request
Buffer

HTU

www.ti.com IntroductionF

Table 1. 12-Sample Digitized Sine Table

Degree Radian sine(Radian) Normalize to 0 %
0 0.0000 0.0000 1.0000 0.50
30 0.5233 0.4998 1.4998 0.75
60 1.0467 0.8658 1.8658 0.93
90 1.5700 1.0000 2.0000 1.00
120 2.0933 0.8666 1.8666 0.93
150 2.6167 0.5011 1.5011 0.75
180 3.1400 0.0016 1.0016 0.50
210 3.6633 -0.4984 0.5016 0.25
240 4.1867 -0.8650 0.1350 0.07
270 4.7100 -1.0000 0.0000 0.00
300 5.2333 -0.8673 0.1327 0.07
330 5.7567 -0.5025 0.4975 0.25

1.2 Hardware Dataflow
The key to generating a sine wave is the ability to continuously generating a time-varying PWM. Time-
varying PWM means that the duty cycle will change from one sample point to another. The duty cycle at
each sample point is a representation of the sine amplitude. Two things are necessary in order to
accomplish this. First, store the different duty cycles needed to reconstruct the sine wave digitally. These
can be pre-calculated duty cycles in a lookup table stored in the system RAM. Then, a mechanism to
continuously transfer these duty cycles to N2HET RAM is needed. One way to do this is to use the CPU
to read the sine lookup table and then write to the N2HET RAM by using interrupt. Each time the N2HET
finishes one PWM cycle it generates an interrupt to the CPU. In the ISR, the CPU will transfer the new
duty cycle. However, this is not the most efficient way as it takes away CPU's bandwidth from performing
other critical tasks. The interrupt also involves saving and restoring context; this can take some cycles to
complete. The ISR latency may become the limiting factor in determining the fastest sampling frequency.

In this application report, the on-chip HTU module is used to handle this chord. HTU not only has the
capability to transfer data from the lookup table to the N2HET RAM but also has the capability to do this
task in a circular fashion repeatedly. This is exactly what is needed because the task is not generating one
sine cycle but a continuous sine wave. The HTU can automatically repeat from the first element of the
lookup table after the lookup table is completely transferred. Figure 2 illustrates the dataflow of the HTU
transfer.

Figure 2. HTU Dataflow

2 Sine Wave Frequency Calculation
There is one important relationship established from Figure 1; the frequency of the sine wave depends on
the PWM period and the number of sample points. This relationship can be written in Equation 1.

(1)

where:

3SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

Sine Wave Frequency Calculation www.ti.com

FO = The sine wave frequency

FPWM = The PWM frequency

samples = The number of samples to digitize the sine wave

It is understood from the equation that if the output sine wave frequency is increased, either the PWM
frequency needs to be increased or the number of sample points needs to be decreased. Decreasing the
number of sample points increases quantization errors. The sine wave produced using only 12 points will
not be smooth after passing the PWM through a Low-Pass Filter (LPF). The higher the number of sample
points, the less quantization errors. Therefore, don't keep the number of sample points too low in order to
synthesize a nice sine wave. In this application report, 128 sample points are used. You can choose
another number of samples to suit your application need.

Since the number of sample points to 128 is fixed, the only parameter played with in order to change the
output frequency is by changing the PWM frequency. However, there is a limitation on the fastest FPWM
you can get. The FPWM is a function of the reference clock (VCLK2) to N2HET and the prescaler factor for
the Loop Resolution Period (LRP).

4 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

F HzPWMF HzO
samples

610.4
4.7

128
= = @

()
F HzPWM

ns

1
610.4

1024 128 12.5
= @

* *

F KHzPWMF KHzO
samples

5625.6
44

128
= = @

()
F KHzPWM

ns

1
5625.6

16 11.11
= @

*

()
FO

SINE FREQ DIVIDER lr VCLK samples

1

_ _ 2
=

* * *

()
FPWM

SINE FREQ DIVIDER lr VCLK

1

_ _ 2
=

* *

LRP lr hr VCLK2= * *

()
FPWM

SINE FREQ DIVIDER LRP

1

_ _
=

*

www.ti.com Sine Wave Frequency Calculation

This relationship can be written as shown in Equation 2:

(2)

where:

SINE_FREQ_DIVIDER = Number of LRP, SINE_FREQ_DIVIDER >= 1
(3)

where:

hr = 1, the hr (high resolution) prescaler factor is fixed in this application report

lr = 16, 32, 64, or 128. lr is the low resolution prescaler factor.

The equation for FPWM can be re-written as shown in Equation 4.

(4)

Substituting Equation 4 into Equation 1, will give you Equation 5.

(5)

2.1 Example 1
Suppose the following:

VCLK2 = 11.11ns (90 MHz)

lr = 16

SINE_FREQ_DIVIDER = 1

samples = 128

The fastest FPWM will be:

(6)

The fastest sine wave frequency will be:

(7)

2.2 Example 2
Suppose the following:

VCLK2 = 12.5ns (80 MHz)

lr = 128

SINE_FREQ_DIVIDER = 1024

samples = 128

The FPWM will be:

(8)

The sine wave frequency will be:

(9)

5SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

TMS570/RM

MCU

220 ohm
N2HET1 PWM Pin

1 uF

Vin Vout

()
SINE FREQ DIVIDER

ns

1
_ _ 41

120 128 128 125
= @

* * *

SINE FREQ DIVIDER
F samples lr VCLKO

1
_ _

2
=

* * *

Sine Wave Frequency Calculation www.ti.com

2.3 How to Obtain a Desired Sine Wave Frequency
By playing with the SINE_FREQ_DIVIDER and the lr prescaler, it is possible to obtain the desired sine
wave frequency as you can also express:

(10)

Suppose the following:

FO = 120 Hz, the desired output sine wave frequency

VCLK2 = 12.5 ns (80 MHz)

lr = 128

samples = 128

The SINE_FREQ_DIVIDER will be:

(11)

Table 2. Examples of Sine Wave Frequency (FO) vs. Different SINE_FREQ_DIVIDER and lr Prescaler
With VCLK2 = 90 MHz

SINE_FREQ_DIVIDER
lr 1 2 3 4 5 16 32 64 128 256
16 44 KHz 22 KHz 14.6 KHz 11 KHz 8.8 KHz 2.7 KHz 1.4 KHz 687 Hz 343 Hz 172 Hz
32 22 KHz 11 KHz 7.3 KHz 5.5 KHz 4.5 Hz 1.4 KHz 687 Hz 343 Hz 172 Hz 86 Hz
64 11 KHz 5.5 KHz 3.6 KHz 2.7 KHz 2.2 Hz 687 Hz 343 Hz 172 Hz 86 Hz 43 Hz
128 5.5 KHz 2.7 KHz 1.8 KHz 1.4 KHz 1.1 KHz 343 Hz 172 Hz 86 Hz 43 Hz 21 Hz

3 Low-Pass Filter (LPF)
The PWM generated out of the microcontroller needs to pass through a LPF to remove the high frequency
components. There is no one size fits all solution when it comes to the types of filters to use. The N2HET
demonstrated in this application report can generate a wide range of sine wave frequencies. Therefore, a
filter with the proper pass-band bandwidth should be used accordingly. For simplicity reason, a first order
passive low-pass filter using only the low-cost RC components is used, as shown in Figure 3. This first
order low pass filter has its cut-off frequency at about 724Hz. Therefore, the sine wave that is
demonstrated is in the pass-band that is slower than the cut-off frequency. The focus of this application
report is to show how to write the N2HET code to produce a sine wave. This document does not touch on
the optimum filter to use. Extra information on the analysis of filters is provided in Section 7.

Figure 3. Low-Pass Filter

6 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

START

Set up counter

with the specified

PWM frequency

One complete

PWM cycle

generated?

N2HET1 Sine Wave Flowchart

Increment

counter

Counter =

compare

value?

Clear the pin

state on the

specified pin

Yes

Load the next

compare value

Take opposite pin

action on the

specified pin

No

Generate DMA

request to HTU

www.ti.com N2HET Implementation

4 N2HET Implementation

4.1 N2HET1 Sine Wave Generation Flowchart

Figure 4. N2HET1 Sine Wave Flowchart

7SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

N2HET Implementation www.ti.com

1. Set up the time-base counter with the specified PWM period.
2. Increment the counter
3. Check if the counter has reached the specified pre-load value which defines the PWM period. If yes,

go to step 4. If no, go to step 6.
4. Set the specified pin to the opposite state.
5. Generate a DMA request to the HTU. Wait for one complete PWM period before generating the

request to HTU to retrieve the next duty cycle compare value. This way you will have a smooth sine
wave.

6. Compare the existing time-base counter with the current compare value. If there is a match, go to 7. If
no match, go to step 1.

7. Clear the pin state on the specified pin.
8. Load the new compare value.
9. Go back to step 1.

4.2 N2HET1 Sine Wave Program
The example N2HET1 program code is illustrated below. Directives using .equ are parameters used to
configure the program; you can change these parameters. By default, these parameters have initial values
that are small for quick simulation using HET IDE. The host CPU will overwrite these parameters in the
host side application code.
;;;
; This example illustrates how to generate a PWM asymmetrically. The duty cycle
; is to be updated by the host application by writing the new duty cycle (compare value) to
; the MOV32 data field. When there is a compare match, the MOV32 instruction will move
; the new compare value to the ECMP instruction. The update of the ECMP is considered
; synchronous as the update is only done with respect to the LRP (loop resolution period)
; time base and only when there is a compare match.
;;;

PWM_PERIOD .equ 1
PWM_PIN_NUM .equ 9
INIT_COMPARE .equ 1
INIT_HR_DELAY .equ 0

; Use CNT to generate a virtual counter. The counter period is changable by the host
; application. When counter reaches the PWM_PERIOD value, a DMA request is generated. The
; HTU is setup to take this request and return a new duty cycle. The new duty cycle will
; be written to the MOV32 data field as the new compare value.
L00 CNT { reqnum=0,request=GENREQ,reg=A,irq=OFF,max=PWM_PERIOD};

; ECMP is setup in high resolution mode to create a compare value against the current
; counter value in CNT instruction. Whenever, there is a match, it will set the specified
; pin low until the end of the PWM period. The pin starts as high at the beginning of the
; PWM cycle. The specified pin is changable by the host application.
L01 ECMP { next=L03,hr_lr=HIGH,en_pin_action=ON,cond_addr=L02,pin=PWM_PIN_NUM,

action=PULSELO,reg=A,irq=OFF,data=INIT_COMPARE,hr_data=INIT_HR_DELAY};

; MOV32 instruction is only executed when ECMP has a compare match. When this instruction
; is executed, it will copy its data field value which contains the latest duty cycle (
; the compare value) back to ECMP's data field. The MOV32's data field is updated by the HTU
; with the new duty cycle value when responding to the request by the CNT instruction.
L02 MOV32 { remote=L01,type=IMTORE&GREM,reg=NONE,data=INIT_COMPARE,hr_data=INIT_HR_DELAY};

; Branch back to the beginning.
L03 BR { next= L00, cond_addr=L00, event= NOCOND }

8 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

www.ti.com N2HET Implementation

4.3 N2HET Assembler
The N2HET code needs to be translated into the opcode that the N2HET can execute. This is done with
the N2HET assembler hetp. The assembler can be executed on the command line. Here is an example of
the command line to use for assembling the code for N2HET1 instance:
hetp -n0 -hc32 Sine_Wave.het

The -hc32 argument produces C header file Sine_Wave.h and source file Sine_Wave.c for the Texas
Instruments TI's C compiler. Specifying the -n0 argument will allow the assembler to produce unique
header and source files for the N2HET1 instance.

5 Host Side Setup

5.1 HalcoGen Setup
This example utilizes the HalCogen tool to configure the device. The target device selected in the
HalCoGen is the TMS570LS1224 running at 160 MHz. It can easily be ported to other devices by following
the steps below.
1. Create a new project: File → New → Project. Name the project Sine_Wave.
2. Enable the N2HET1 driver and disable the rest.

9SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

Host Side Setup www.ti.com

3. Configure the N2HET1. Make sure to enable the checkbox for "Enable Advanced Config Mode/Disable
BlackBox Driver" and provide the header file (Sine_Wave.h) and source file (Sine_Wave.c) generated
in Section 4.3. This step bypasses the default blackbox N2HET code provided by HalCoGen so that
the custom N2HET code in Section 4.2 can be loaded to the N2HET module.

10 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

www.ti.com Host Side Setup

4. Select File → Generate Code to generate the code.

5.2 Configurable Macros
Three macros are utilized to configure the N2HET1 operation. Below are the list of changeable macros.
/* Below 3 macros are changeable by user */

/* This example uses the below equations to calculate the SINE wave frequency (F):
*
* (1) F = 1 / (PWM_PERIOD * samples)
* (2) PWM_PERIOD is the period of the PWM Base Frequency and
* PWM_PERIOD = (SINE_FREQ_DIVIDER * LRP) where SINE_FREQ_DIVIDER >= 1
* (3) LRP = hr * lr. hr is fixed to 1 in this program. The supported lr
* in this program are 16, 32, 64, and 128. lr smaller than 16 will not
* give enough time slots for the N2HET to execute and also too short for
* the HTU to complete the transfer.
* (4) samples = the number of samples to digitize the sine wave
*
* The fastest SINE frequency this example can support for SINE_FREQ_DIVIDER = 1 and
* samples = 128 would be:
* F = 1 / ((SINE_FREQ_DIVIDER * LRP) * Samples) or
* F = 1 / ((1 * LRP) * 128)
* Suppose HCLK=160MHz, VCLK2=80MHz, 1 LRP = 128 VCLK2 :
* 1 LRP = 128 * 12.5ns = 1.6uS and F = 1 / (1.6uS * 128) ~= 4.88KHz
*
* With 1 LRP = 16 VCLK2 it is possible to generate a sine wave frequency at:
* F = 1 / (16 * 12.5ns * 128) ~=39KHz.
*
* SINE_FREQ_DIVIDER is used to divide down the SINE frequency.
* Setting SINE_FREQ_DIVIDER to 2 will generate 2.44KHz sine wave.
* SINE_FREQ_DIVIDER can be any integer value larger or equal to 1
*/

#define SINE_FREQ_DIVIDER 16

/* allowable LR Prescaler factors are 16, 32, 64 and 128. Anything less
* than 32 will not have enough time slots for the N2HET program to
* run.

11SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

Host Side Setup www.ti.com

* LRPFC can be either 5, 6 or 7.
* 7 -> one lr = 128 VCLK2
* 6 -> one lr = 64 VCLK2
* 5 -> one lr = 32 VCLK2
* 4 -> one lr = 16 VCLK2
*/

#define LRPFC 7

/* The pin number to output the sine wave signal */
#define NHET1_PIN_PWM PIN_HET_9

/**/
/* The PWM Period to be loaded to NHET1 CNT instruction. The minimum

* PWM base frequency of the PWM is 1 * LRP */
#define CNT_MAX_PERIOD SINE_FREQ_DIVIDER

/* Number of sample points to digitize the SINE wave */
#define SAMPLE_SIZE 128

#if SAMPLE_SIZE == 128
/* sine_table_percent array contains the duty cycle of each sample point on the

* sine wave. The percent values will then be converted to actual compare values
* during run-time. The reason that the actual compare values are not hardcoded
* is because this program is designed to support programmable sine frequency.
* When the sine frequency is changed using SINE_FREQ_DIVIDER then the CNT_MAX_PERIOD
* will need to be adjusted. The compare values need to be adjusted as well. Keeping
* only the duty cycle percent values in the lookup table allows us to simply
* calculate the final compare values by multiplying the percent with the CNT_MAX_PERIOD.
*
*/

float sine_table_percent[SAMPLE_SIZE] = {0.5,0.52452141,0.548983805,0.573328313,0.597496346,
0.62142974,0.645070896,0.668362917,0.691249749,0.71367631,0.735588627,0.756933966,
0.777660956,0.797719715,0.817061967,0.835641164,0.853412591,0.870333478,0.886363105,
0.901462892,0.9155965,0.928729914,0.940831527,0.951872215,0.961825406,0.970667147,
0.978376158,0.984933888,0.990324553,0.994535181,0.997555637,0.999378653,0.999999841,
0.999417707,0.997633651,0.994651967,0.990479831,0.985127283,0.978607206,0.970935291,
0.962130001,0.952212527,0.941206738,0.929139121,0.916038718,0.901937056,0.886868075,
0.870868039,0.853975454,0.836230976,0.81767731,0.798359106,0.778322858,0.757616784,
0.736290719,0.714395985,0.691985276,0.669112527,0.645832783,0.622202072,0.598277264,
0.574115936,0.549776238,0.525316747,0.500796326,0.47627399,0.451808753,0.427459496,
0.403284818,0.379342899,0.355691359,0.332387119,0.309486264,0.287043908,0.265114062,
0.243749504,0.223001649,0.202920432,0.18355418,0.164949501,0.14715117,0.130202021,
0.114142845,0.099012291,0.084846772,0.07168038,0.059544802,0.048469244,0.03848036,
0.029602191,0.021856103,0.015260738,0.009831969,0.00558286,0.002523639,0.000661668,
0.000001426,0.000544506,0.002289597,0.005232501,0.009366135,0.014680552,0.02116296,
0.02879776,0.037566577,0.047448308,0.05841917,0.070452761,0.08352012,0.097589799,
0.112627937,0.128598342,0.14546258,0.163180064,0.181708154,0.20100226,0.221015947,
0.241701051,0.263007789,0.284884883,0.307279683,0.330138292,0.353405699,0.377025906,
0.400942069,0.425096628,0.449431454,0.47388798

};
#else
uint32 sine_table[SAMPLE_SIZE] = {0.5,0.548983805,0.597496346,0.645070896,0.691249749,0.735588627,

0.777660956,0.817061967,0.853412591,0.886363105,0.9155965,0.940831527,0.961825406,0.978376158,
0.990324553,0.997555637,0.999999841,0.997633651,0.990479831,0.978607206,0.962130001,
0.941206738,0.916038718,0.886868075,0.853975454,0.81767731,0.778322858,0.736290719,
0.691985276,0.645832783,0.598277264,0.549776238,0.500796326,0.451808753,0.403284818,
0.355691359,0.309486264,0.265114062,0.223001649,0.18355418,0.14715117,0.114142845,
0.084846772,0.059544802,0.03848036,0.021856103,0.009831969,0.002523639,0.000001426,
0.002289597,0.009366135,0.02116296,0.037566577,0.05841917,0.08352012,0.112627937,
0.14546258,0.181708154,0.221015947,0.263007789,0.307279683,0.353405699,0.400942069,
0.449431454

};
#endif
uint32 sine_table[SAMPLE_SIZE] = {0};
/* USER CODE END */

12 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

www.ti.com Host Side Setup

5.3 CPU Main()
The host CPU's job is to first initialize the device and configure the N2HET1 and HTU. The rest of the time
the host CPU stays in a loop.
void main(void)
{
/* USER CODE BEGIN (3) */

/* initialize HTU1 based on HalCoGen settings */
htuInit();

/* initialize NHET1 based on HalCoGen settings */
hetInit();

/* Configure additional settings of NHET1 based on the macros settings */
configNHET1();

while(1);

/* USER CODE END */
}

5.4 N2HET Setup
/* configureNHET1 configures the selected NHET1 pin to output PWM. It

* also loads the specified PWM period into the NHET1 RAM */
void configNHET1()
{

/* configure the LRP prescaler, the hr is always 1 and lr can be
* either 16, 32, 64 or 128 */

hetREG1->PFR = LRPFC << 8;

/* calculate_ecmp_compare() will calculate the actual compare values
* as well as the high resolution delay values for each sample point

* of the same wave to be loaded into the NHET1 ECMP pin instructions */
calculate_ecmp_compare();

/* Enable DMA request on channel 0 of HTU. In the CNT instruction, the
* DMA request is asserted to channel 0 of the HTU module */

hetREG1->REQENS = 1 ;

/* Set the selected pin to output. */
hetREG1->DIR = (1 << NHET1_PIN_PWM) ;

/* Load the PWM period based on the defined macro to the CNT instruction */
hetRAM1->Instruction[pHET_L00_0].Control = (uint32)(CNT_MAX_PERIOD - 1) |
(hetRAM1->Instruction[pHET_L00_0].Control & 0xFFFD0000);

/* Configure the pin number to output the PWM */
hetRAM1->Instruction[pHET_L01_0].Control =

(hetRAM1->Instruction[pHET_L01_0].Control & 0xFFFFE0FF) |
(NHET1_PIN_PWM << 8);

}

/* This function calculates the compare value and the high resolution delay
* to be loaded into the NHET1 ECMP instruction for generating the PWM
* DUTY cycle
*/

void calculate_ecmp_compare()
{

int i=0;
/* The number of sample points is fixed using SAMPLE_SIZE. The SINE

* wave frequency is F = 1 / ((SINE_FREQ_DIVIDER * LRP) * Samples).
* The way to generate a divided sine wave frequency is to increase

13SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

Host Side Setup www.ti.com

* the PWM base frequency inversely. As we change the PWM base frequency
* we also need to adjust the compare values to generate the PWM duty
* cycle at each sine wave sample point.

*/

for (i=0;i<=SAMPLE_SIZE;i++){
/* CNT_MAX_PERIOD * 128 gives the total number of high resolution

* clocks in one PWM_PERIOD. The multiplication is done by performing
* a left shift of CNT_MAX_PERIOD by 7 bits.
*/

sine_table[i] = (sine_table_percent[i] * (CNT_MAX_PERIOD << 7));
}

}

5.5 HTU Setup
/* htuInit setups the HTU to transfer new compare value stored in

* the sine_table to the NHET ECMP instruction at each completion of
* one PWM period. The transfer is done in a circular fashion. */

void htuInit(void){

/* DCP0 CPx element count = 1, frame count = SAMPLE_SIZE */
htuRAM1 ->DCP[0].ITCOUNT = 0x00010000 + SAMPLE_SIZE;

/* DCP0 CPx DIR = main memory to NHET */
/* SIZE = 32-bit */
/* ADDMH = 16 bytes */
/* ADDFM = post-increment main memory */
/* TMBA = circular buffer A */
/* TMBB = one shot buffer B (buffer B not used) */
/* IHADDR = 0x28 MOV32 data field */
htuRAM1 ->DCP[0].IHADDRCT = (htuRAM1 ->DCP[0].IHADDRCT & 0x0) |

0x1 << 23 | // DIR
0x0 << 22 | // SIZE
0x0 << 21 | // ADDMH
0x0 << 20 | // ADDFM
0x1 << 18 | // TMBA
0x0 << 16 | // TMBB
0x28 << 0; // IHADDR

/* DCP0 CPA start address of source buffer */
htuRAM1 ->DCP[0].IFADDRA = (unsigned int)sine_table;

/* enable DCP0 CPA */
htuREG1 ->CPENA = 0x00000001;
/* enable HTU */
htuREG1 ->GC = 0x00010000;

}

14 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

www.ti.com Host Side Setup

5.6 Project Directory Structure
This example project is named Sine_Wave; Figure 5 shows the project directory structure. The N2HET
program is contained under the HET code folder.

Figure 5. Sine_Wave Project Directory Structure

6 Examples
Suppose we want to generate a 300Hz sine wave assuming the VCLK2 is 80 MHz and lr equals to 128.
Calculate the SINE_FREQ_DIVIDER to be 16.27 using Equation 10. However, the SINE_FREQ_DIVIDER
needs to be a whole number. Therefore, you need to round 16.27 down to 16. Since
SINE_FREQ_DIVIDER equals to 16, the closest sine wave frequency that can be obtained is 305.18Hz
using Equation 5. Figure 6 shows a clean sine wave being generated at the specified frequency. FFT
analysis of the sine wave affirms the fundamental frequency at about 300Hz as shown in the lower zoom
in window of Figure 7 while the rest of harmonics quickly die off at -60dB shown in the upper zoom out
window. Further improvement to attenuate the higher harmonic components can be achieved by using
higher order filters.

15SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

Examples www.ti.com

Figure 6. A 305Hz Sine Wave

16 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

www.ti.com Examples

Figure 7. FFT Analysis of the Sine Wave

17SPNA217–May 2015 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

References www.ti.com

7 References
• HET Integrated Development Environment User's Guide (SPNU483)
• NHET Getting Started (SPRABA0B)
• Enhanced High-End Timer (NHET) Assembler User's Guide (SPNU490)
• Triangle/Trapezoid Wave Generation Using PWM With Hercules N2HET (SPNA220)
• Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x Digital Signal Controller

(SPRAA88)
• PWM DAC Using MSP430 High-Resolution Timer (SLAA497)

18 Sine Wave Generation Using PWM With Hercules™ N2HET and HTU SPNA217–May 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNU483
http://www.ti.com/lit/pdf/SPRABA0B
http://www.ti.com/lit/pdf/SPNU490
http://www.ti.com/lit/pdf/http://www.ti.com/lit/an/spna220/spna220.pdf
http://www.ti.com/lit/pdf/SPRAA88
http://www.ti.com/lit/pdf/SLAA497
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA217

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Sine Wave Generation Using PWM With Hercules N2HET and HTU
	1 IntroductionF
	1.1 Sine Wave and PWM Overview
	1.2 Hardware Dataflow

	2 Sine Wave Frequency Calculation
	2.1 Example 1
	2.2 Example 2
	2.3 How to Obtain a Desired Sine Wave Frequency

	3 Low-Pass Filter (LPF)
	4 N2HET Implementation
	4.1 N2HET1 Sine Wave Generation Flowchart
	4.2 N2HET1 Sine Wave Program
	4.3 N2HET Assembler

	5 Host Side Setup
	5.1 HalcoGen Setup
	5.2 Configurable Macros
	5.3 CPU Main()
	5.4 N2HET Setup
	5.5 HTU Setup
	5.6 Project Directory Structure

	6 Examples
	7 References

	Important Notice

