FEATURES

- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- UBTTM Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Modes
- Operates From 1.65 V to 3.6 V
- Max t_{pd} of 3.9 ns at 3.3 V
- $\pm 24-\mathrm{mA}$ Output Drive at 3.3 V
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)

DESCRIPTION/ORDERING INFORMATION

This 18 -bit universal bus transceiver is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
Data flow in each direction is controlled by output-enable (OEAB and $\overline{O E B A}$), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

dgG or dl package (TOP VIEW)	
OEAB 1	56 GND
LEAB [2	55 CLKAB
A1 3	54 B1
GND [4	53 GND
A2 5	$52]$ B2
A3 6	51 в3
VCC ${ }^{\text {c }}$	$50 \mathrm{~V}_{\mathrm{CC}}$
A4 8	${ }_{49}{ }^{\text {B4 }}$
A5 9	48 B5
A6 10	47 B6
GND 11	46 GND
A7 12	45 B7
A8 13	44 B8
A9 14	43 B9
A10 15	42] B10
A11 16	${ }^{41}$] B11
A12 17	$40]$ B12
GND 18	39 GND
A13 19	38 B13
A14 20	${ }^{37}$ B14
A15 21	36 B15
V_{CC}	${ }^{35} \mathrm{~V}_{\mathrm{CC}}$
A16 23	$34]$ B16
A17 24	33 B17
GND 25	32 GND
A18 26	${ }^{31}$ B18
OEBA 27	30 CLKBA
LEBA 28	29] GND

Data flow for B to A is similar to that of A to B, but uses $\overline{O E B A}$, LEBA, and CLKBA. The output enables are complementary (OEAB is active high, and OEBA is active low).

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SSOP - DL	Tube	SN74ALVCH16501DL	ALVCH16501
		Tape and reel	SN74ALVCH16501DLR	
	TSSOP - DGG	Tape and reel	SN74ALVCH16501DGGR	ALVCH16501
	VFBGA - GQL	Tape and reel	SN74ALVCH16501KR	VH501
	VFBGA - ZQL (Pb-free)		74ALVCH16501ZQLR	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus, UBT are trademarks of Texas Instruments.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

To ensure the high-impedance state during power up or power down, $\overline{O E B A}$ should be tied to V_{Cc} through a pullup resistor, and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

GQL OR ZQL PACKAGE
(TOP VIEW)

TERMINAL ASSIGNMENTS

	1	2	3	4	5	6
A	A1	LEAB	OEAB	GND	CLKAB	B1
B	A3	A2	GND	GND	B2	B3
C	A5	A4	$V_{\text {CC }}$	V_{CC}	B4	B5
D	A7	A6	GND	GND	B6	B7
E	A9	A8			B8	B9
F	A10	A11			B11	B10
G	A12	A13	GND	GND	B13	B12
H	A14	A15	$V_{C C}$	$V_{\text {CC }}$	B15	B14
J	A16	A17	GND	GND	B17	B16
K	A18	OEBA	LEBA	GND	CLKBA	B18

FUNCTION TABLE ${ }^{(1)}$

INPUTS				OUTPUT
OEAB	LEAB	CLKAB	A	
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\uparrow	L	L
H	L	\uparrow	H	H
H	L	H	X	$\mathrm{B}_{0}{ }^{(2)}$
H	L	L	X	$\mathrm{B}_{0}(3)$

(1) A-to-B data flow is shown; B-to-A flow is similar, but uses $\overline{O E B A}$, LEBA, and CLKBA.
(2) Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low
(3) Output level before the indicated steady-state input conditions were established

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for the DGG and DL packages.

SN74ALVCH16501
 18-BIT UNIVERSAL BUS TRANSCEIVER
 WITH 3-STATE OUTPUTS

SCESO24J-JULY 1995-REVISED OCTOBER 2004

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
		Except I/O ports ${ }^{(2)}$	-0.5	4.6	
V		I/O ports ${ }^{(2)(3)}$	-0.5	$\mathrm{V}_{C C}+0.5$	V
V_{O}	Output voltage range ${ }^{(2)(3)}$		-0.5	$\mathrm{V}_{C C}+0.5$	V
I_{K}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
$\mathrm{l}_{\text {OK }}$	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
10	Continuous output current			± 50	mA
	Continuous current through each			± 100	mA
		DGG package		64	
θ_{JA}	Package thermal impedance ${ }^{(4)}$	DL package		56	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		GQL/ZQL package		42	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) This value is limited to 4.6 V maximum.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS ${ }^{(1)}$

			MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		1.65	3.6	V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$		
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		$\times \mathrm{V}_{\mathrm{CC}}$	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8	
V_{1}	Input voltage		0	V_{CC}	V
V_{O}	Output voltage		0	V_{CC}	V
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$		-4	
	High-level output current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-12	mA
OH	High-level output current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		-24	
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$		4	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		12	mA
OL	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		24	
$\Delta t / \Delta v$	Input transition rise or fall rate			10	ns / V
T_{A}	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST	ONDITIONS	V_{cc}	MIN	TYP(1) MAX	UNIT		
V_{OH}		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		1.65 V to 3.6 V	$\mathrm{V}_{\text {CC }}-0.2$		V		
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$		1.65 V	1.2				
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$		2.3 V	2				
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$		2.3 V	1.7				
		2.7 V	2.2						
		3 V	2.4						
		$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		3 V	2				
$\mathrm{V}_{\text {OL }}$				$\mathrm{l}_{\mathrm{LL}}=100 \mu \mathrm{~A}$		1.65 V to 3.6 V		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$		1.65 V		0.45			
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$		2.3 V		0.4			
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		2.3 V		0.7			
		2.7 V		0.4					
				3 V		0.55			
1				$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or GND }$		3.6 V	± 5		$\mu \mathrm{A}$
$I_{\text {(hold) }}$		$\mathrm{V}_{1}=0.58 \mathrm{~V}$		1.65 V	25		$\mu \mathrm{A}$		
		$\mathrm{V}_{1}=1.07 \mathrm{~V}$		1.65 V	-25				
		$\mathrm{V}_{1}=0.7 \mathrm{~V}$		2.3 V	45				
		$\mathrm{V}_{1}=1.7 \mathrm{~V}$		2.3 V	-45				
		$\mathrm{V}_{1}=0.8 \mathrm{~V}$		3 V	75				
		$\mathrm{V}_{1}=2 \mathrm{~V}$		3 V	-75				
		$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V}^{(2)}$		3.6 V		± 500			
$\mathrm{Ioz}^{(3)}$		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.6 V		± 10	$\mu \mathrm{A}$		
I_{cc}		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND,	$\mathrm{l}_{0}=0$	3.6 V		40	$\mu \mathrm{A}$		
$\Delta l_{\text {CC }}$		One input at $\mathrm{V}_{\text {CC }}-0.6 \mathrm{~V}$	Other inputs at V_{CC} or GND	3 V to 3.6 V	750		$\mu \mathrm{A}$		
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		3.3 V		4	pF		
$\mathrm{C}_{\text {io }}$	A or B ports	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND		3.3 V		8	pF		

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
(3) For I/O ports, the parameter I_{Oz} includes the input leakage current.

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			150		150	150		MHz
t_{pd}	A or B	B or A	1	4.8	4.5	1	3.9	ns
	LE	A or B	1.1	5.7	5.3	1.3	4.6	
	CLK		1.2	6.1	5.6	1.4	4.9	
$\mathrm{t}_{\text {en }}$	OEAB	B	1	5.8	5.3	1	4.6	ns
$\mathrm{t}_{\text {dis }}$	OEAB	B	1.5	6.2	5.7	1.4	5	ns
$\mathrm{t}_{\text {en }}$	$\overline{\text { OEBA }}$	A	1.3	6.3	6	1.1	5	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\text { OEBA }}$	A	1.3	5.3	4.6	1.3	4.2	ns

OPERATING CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
			TYP	TYP			
C_{pd}	Power dissipation capacitance	Outputs enabled		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$	44	54	pF
		Outputs disabled	6		6		

PARAMETER MEASUREMENT INFORMATION

TEST	$\mathbf{S 1}$
$\mathbf{t}_{\text {pd }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathbf{t}_{\text {PZL }}$	$\mathbf{V}_{\text {LOAD }}$
$\mathbf{t}_{\text {PHZ }} / \mathbf{t}_{\text {PZH }}$	GND

V_{cc}	INPUT		V_{M}	$\mathrm{V}_{\text {LOAD }}$	C_{L}	R_{L}	V_{Δ}
	V_{1}	t_{r} / t_{f}					
1.8 V	V_{Cc}	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\text {cc }}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	Vcc	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{cc}} / 2$	$2 \times V_{c c}$	30 pF	500Ω	0.15 V
2.7 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.7 V	$\leq 2.5 \mathrm{~ns}$	1.5 V	6 V	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS PULSE DURATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{e n}$.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
74ALVCH16501DGGRG4	ACTIVE	TSSOP	DGG	56	2000	TBD	Call TI	Call TI	-40 to 85		Samples
SN74ALVCH16501DGGR	ACTIVE	TSSOP	DGG	56	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16501	Samples
SN74ALVCH16501DL	ACTIVE	SSOP	DL	56	20	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ALVCH16501	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. Tl may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{6}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

TeXAS

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74ALVCH16501DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nomina

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALVCH16501DGGR	TSSOP	DGG	56	2000	367.0	367.0	45.0

TUBE

B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W $(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
SN74ALVCH16501DL	DL	SSOP	56	20	473.7	14.24	5110	7.87

DL (R-PDSO-G56)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:6X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

