

SINGLE-SUPPLY VOLTAGE-LEVEL TRANSLATOR WITH NINE CONFIGURABLE GATE LOGIC FUNCTIONS

Check for Samples: SN74AUP1T98

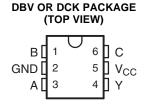
FEATURES

- Available in the Texas Instruments NanoStar™ Packages
- Single-Supply Voltage Translator
- 1.8 V to 3.3 V (at $V_{CC} = 3.3$ V)
- 2.5 V to 3.3 V (at $V_{CC} = 3.3$ V) •
- 1.8 V to 2.5 V (at $V_{CC} = 2.5$ V)
- 3.3 V to 2.5 V (at $V_{CC} = 2.5$ V)
- **Nine Configurable Gate Logic Functions**
- Schmitt-Trigger Inputs Reject Input Noise and **Provide Better Output Signal Integrity**
- Ioff Supports Partial-Power-Down Mode With Low Leakage Current (0.5 µA)
- Very Low Static and Dynamic Power • Consumption
- Pb-Free Packages Available: SOT-23 (DBV), ٠ SC-70 (DCK), and WCSP (NanoStar)
- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- **ESD Performance Tested Per JESD 22** •
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Related Devices: SN74AUP1T97, SN74AUP1T57, and SN74AUP1T58

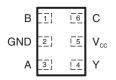
DESCRIPTION

AUP technology is the industry's lowest-power logic technology designed for use in battery-operated or battery backed-up equipment. The SN74AUP1T98 is designed for logic-level translation applications with input switching levels that accept 1.8-V LVCMOS signals, while operating from either a single 3.3-V or 2.5-V V_{CC} supply.

The wide V_{CC} range of 2.3 V to 3.6 V allows the possibility of battery voltage drop during system operation and ensures normal operation between this range.


Schmitt-trigger inputs ($\Delta V_T = 210$ mV between positive and negative input transitions) offer improved noise immunity during switching transitions, which is especially useful on analog mixed-mode designs. Schmitt-trigger inputs reject input noise, ensure integrity of output signals, and allow for slow input signal transition.

The SN74AUP1T98 can be easily configured to perform a required gate function by connecting A, B, and C inputs to V_{CC} or ground (see Function Selection table). Up to nine commonly used logic gate functions can be performed.


 I_{off} is a feature that allows for powered-down conditions ($V_{CC} = 0 V$) and is important in portable and mobile applications. When $V_{CC} = 0 V$, signals in the range from 0 V to 3.6 V can be applied to the inputs and outputs of the device. No damage occurs to the device under these conditions.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoStar is a trademark of Texas Instruments.

DRY OR DSF PACKAGE (TOP VIEW)

YFP OR YZP PACKAGE (TOP VIEW)

			1
В	(Á1) 1	6 (Áz)	С
GND	函12	5 (52)	V _{CC}
B GND A	(ć] ¹ 3	4 (53)	Y
			ļ

The SN74AUP1T98 is designed with optimized current-drive capability of 4 mA to reduce line reflections, overshoot, and undershoot caused by high-drive outputs.

NanoStar package technology is a major breakthrough in IC packaging concepts, using the die as the package.

ORDERING INFORMATION

FUNCTION SELECTION TABLE

For package and ordering information, see the Package Option Addendum at the end of this document.

LOGIC FUNCTION	FIGURE NO.					
2-to-1 data selector	5					
2-input NAND gate	6					
2-input NOR gate with one inverted input	7					
2-input NAND gate with one inverted input	7					
2-input NAND gate with one inverted input	8					
2-input NOR gate with one inverted input	8					
2-input NOR gate	9					
Inverter	10					
Noninverted buffer	11					

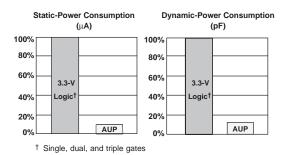


Figure 1. AUP – The Lowest-Power Family

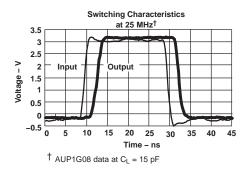


Figure 2. Excellent Signal Integrity

Copyright © 2004–2013, Texas Instruments Incorporated

SN74AUP1T98

www.ti.com

SCES614I-OCTOBER 2004-REVISED MAY 2013

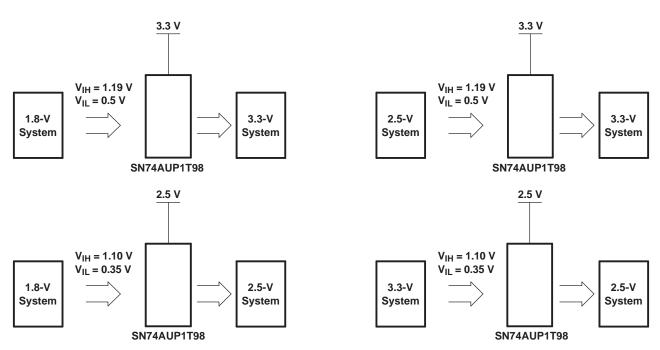


Figure 3. Possible Voltage-Translation Combinations

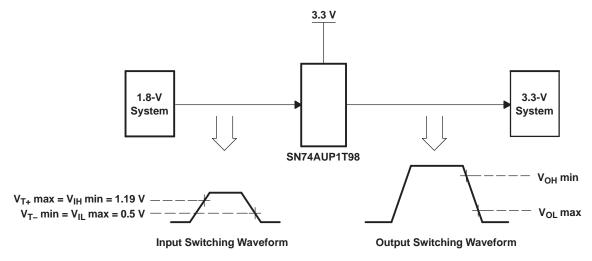
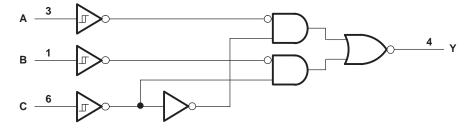



Figure 4. Switching Thresholds for 1.8-V to 3.3-V Translation

SCES614I-OCTOBER 2004-REVISED MAY 2013

	FUI	ICTION TAI	BLE
	INPUTS		OUTPUT
С	В	Α	Y
L	L	L	Н
L	L	н	н
L	н	L	L
L	н	н	L
н	L	L	Н
н	L	н	L
н	н	L	Н
Н	Н	Н	L

LOGIC DIAGRAM (POSITIVE LOGIC)

LOGIC CONFIGURATIONS

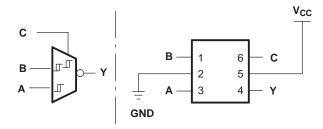


Figure 5. 157+04: 2-to-1 Data Selector With Inverted Output When C is L, Y = $\frac{B}{B}$ When C is H, Y = A

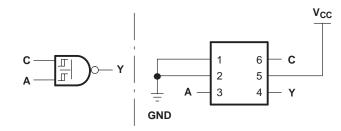


Figure 6. 00: 2-Input NAND Gate

0 1 11		
Submit I	Documentation	Foodback

4

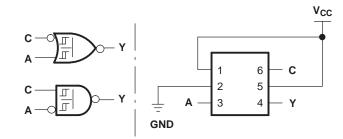


Figure 7. 14+02/14+08: 2-Input NOR Gate With One Inverted Input 2-Input NAND Gate With One Inverted Input

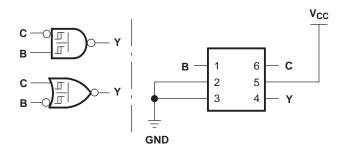


Figure 8. 14+00/14+32: 2-Input NAND Gate With One Inverted Input 2-Input NOR Gate With One Inverted Input

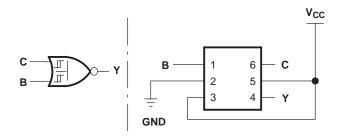


Figure 9. 32: 2-Input NOR Gate

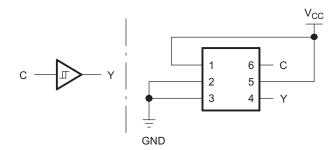


Figure 10. 17/34: Noninverted Buffer

www.ti.com

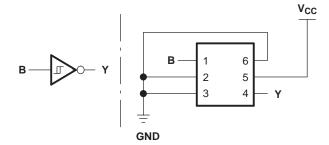


Figure 11. 04/14: Inverter

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-impedation	ance or power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage range in the high or low state ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±50	mA
		DBV package		165	
		DCK package		259	
^	Deales as the read issue days of (3)	DRY package		V _{CC} + 0.5 -50 ±20 ±50 165 259 340 300 123 123	0 0 / / /
θ_{JA}	Package thermal impedance ⁽³⁾	DSF package		300	°C/W
		YFP package		123	
		YZP package		$\begin{array}{cccc} 5 & 4.6 \\ 5 & 4.6 \\ 5 & V_{CC} + 0.5 \\ & -50 \\ \hline & -50 \\ \hline & \pm 20 \\ \hline & \pm 20 \\ \hline & \pm 50 \\ \hline & 165 \\ \hline & 259 \\ \hline & 340 \\ \hline & 300 \\ \hline & 123 \\ \hline & 123 \\ \hline \end{array}$	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.3	3.6	V
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V_{CC}	V
	Lick lovel output outpot	V _{CC} = 2.3 V		-3.1	~ ^
IOH	High-level output current	$V_{CC} = 3 V$		-4	mA
		$V_{CC} = 2.3 V$		3.1	~ ^
IOL	Low-level output current	$V_{CC} = 3 V$		4	mA
T _A	Operating free-air temperature	·	-40	85	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A =	25°C	T _A = -40 to 85°0	T _A = −40°C to 85°C	
			MIN	TYP MAX	MIN	MAX	
V _{T+}		2.3 V to 2.7 V	0.6	1.1	0.6	1.1	
Positive-going input threshold voltage		3 V to 3.6 V	0.75	1.16	0.75	1.19	V
V _{T-}		2.3 V to 2.7 V	0.35	0.6	0.35	0.6	
Negative-going input threshold voltage		3 V to 3.6 V	0.5	0.85	0.5	0.85	V
ΔV_T		2.3 V to 2.7 V	0.23	0.6	0.1	0.6	
Hysteresis (V _{T+} - V _{T-})		3 V to 3.6 V	0.25	0.56	0.15	0.56	V
	I _{OH} = -20 μA	2.3 V to 3.6 V	V _{CC} - 0.1		V _{CC} - 0.1		
V _{OH}	I _{OH} = -2.3 mA	0.0.1/	2.05		1.97		V
	I _{OH} = -3.1 mA	2.3 V	1.9		1.85		
	I _{OH} = -2.7 mA	3 V	2.72		2.67		
	$I_{OH} = -4 \text{ mA}$	3 V	2.6		2.55		
	I _{OL} = 20 μA	2.3 V to 3.6 V		0.1		0.1	
	I _{OL} = 2.3 mA	2.3 V		0.31		0.33	V
V _{OL}	I _{OL} = 3.1 mA	2.3 V		0.44		0.45	
	I _{OL} = 2.7 mA	3 V		0.31		0.33	
	$I_{OL} = 4 \text{ mA}$	5 V		0.44		0.45	
II All inputs	$V_{I} = 3.6 \text{ V or GND}$	0 V to 3.6 V		0.1		0.5	μA
l _{off}	$V_I \text{ or } V_O = 0 \text{ V to } 3.6 \text{ V}$	0 V		0.1		0.5	μA
ΔI _{off}	$V_1 \text{ or } V_0 = 3.6 \text{ V}$	0 V to 0.2 V		0.2		0.5	μA
I _{CC}	$V_{I} = 3.6 \text{ V or GND}, I_{O} = 0$	2.3 V to 3.6 V		0.5		0.9	μA
A1	One input at 0.3 V or 1.1 V, Other inputs at 0 or V _{CC} , $I_0 = 0$	2.3 V to 2.7 V				4	
ΔI _{CC}	One input at 0.45 V or 1.2 V, Other inputs at 0 or V_{CC} , $I_{O} = 0$	3 V to 3.6 V				12	μA
C _i	$V_{I} = V_{CC}$ or GND	3.3 V		1.5			pF
Co	$V_{O} = V_{CC}$ or GND	3.3 V		3			pF

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$, $V_I = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted) (see Figure 12)

PARAMETER	FROM	TO	CL	Τ ₄	∖ = 25°C		T _A = to 85	40°C 5°C	UNIT
	(INPUT)	(OUTPUT)	_	MIN	TYP	MAX	MIN	MAX	
			5 pF	1.8	2.3	2.9	0.5	6.8	
		Y	10 pF	2.3	2.8	3.4	1	7.9	~~~
Lpd	A, B, or C		15 pF	2.6	3.1	3.8	1	8.7	ns
		30 pF	3.8	4.4	5.1	1.5	10.8		

Copyright © 2004–2013, Texas Instruments Incorporated

www.ti.com

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$, $V_1 = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 12)

PARAMETER		TO (OUTPUT)	CL	Т	ק = 25°C		T _A = to 85	40°C 5°C	UNIT
	(INPUT)	(001201)		MIN	TYP	MAX	MIN	MAX	
			5 pF	1.8	2.3	3.1	0.5	6	
		V	10 pF	2.2	2.8	3.5	1	7.1	20
t _{pd}	A, B, or C	Y	15 pF	2.6	3.2	5.2	1	7.9	ns
			30 pF	3.7	4.4	5.2	1.5	10	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$, $V_I = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 12)

PARAMETER	FROM	TO	5 pF 2 2.7 3.5 0.5 5	40°C 5°C	UNIT				
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
			5 pF	2	2.7	3.5	0.5	5.5	
		V	10 pF	2.4	3.1	3.9	1	6.5	
t _{pd}	A, B, or C	Y	15 pF	2.8	3.5	4.3	1	7.4	ns
		30 pF	4	4.7	5.5	1.5	9.5		

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_I = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted) (see Figure 12)

PARAMETER	FROM (INPUT)	TO	CL	$T_A = 25^{\circ}C \qquad \begin{array}{c} T_A = -40^{\circ} \\ to 85^{\circ}C \end{array}$	$T_{A} = 25^{\circ}C \qquad \begin{array}{c} T_{A} = -40^{\circ}C \\ to 85^{\circ}C \end{array}$		T _A = -40°C to 85°C		UNIT
	(INPUT)	(OUTPUT)	_	MIN	TYP	MAX	MIN	MAX	
			5 pF	1.6	2	2.5	0.5	8	
		Y	10 pF	2	2.4	2.9	1	8.5	
tpd	A, B, or C	Ŷ	15 pF	2.3	2.8	3.3	1	9.1	ns
		30 pF	3.4	3.9	4.4	1.5	9.8		

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_I = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted) (see Figure 12)

PARAMETER	FROM	TO (OUTPUT)	CL	Т	∖ = 25°C		T _A = to 85	40°C 5°C	UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
		P 0	5 pF	1.6	1.9	2.4	0.5	5.3	
			10 pF	2	2.3	2.7	1	6.1	~~
t _{pd}	A, B, or C	Ť	15 pF	2.3	2.7	3.1	1	5°C MAX 5.3	ns
			30 pF	3.4	3.8	4.2	1.5	8.5	

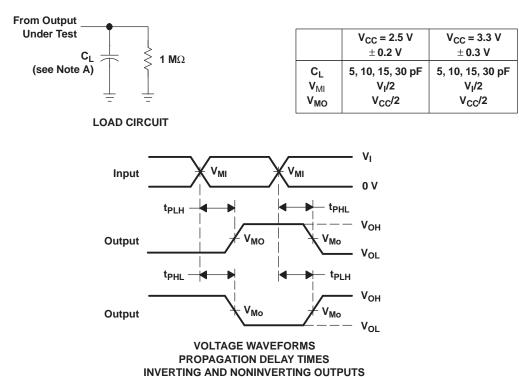
SCES614I-OCTOBER 2004-REVISED MAY 2013

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_I = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 12)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL	Τ ₄	∖ = 25°C		T _A = -40°C to 85°C		UNIT	
	(INPOT)	(001201)	_	MIN	TYP	MAX	MIN	MAX		
t _{pd}	A, B, or C	Y	5 pF	1.6	2.1	2.7	0.5	4.7		
			Y	10 pF	2	2.4	3	1	5.7	
				ř	15 pF	2.3	2.7	3.3	1	6.2
			30 pF	3.4	3.8	4.4	1.5	7.8		

OPERATING CHARACTERISTICS


 $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	$V_{CC} = 2.5 V$	V _{CC} = 3.3 V	UNIT	
			TYP	TYP	0	
C _{pd}	Power dissipation capacitance	f = 10 MHz	4	5	pF	

Copyright © 2004–2013, Texas Instruments Incorporated

SCES614I-OCTOBER 2004-REVISED MAY 2013

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 12. Load Circuit and Voltage Waveforms

CI	hanges from Revision H (May 2010) to Revision I	Page	
•	Updated FUNCTION SELECTION Table.	2	
•	Updated figure caption.	5	
•	Updated figure caption.	5	

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74AUP1T98DBVR	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT6R	Samples
SN74AUP1T98DBVT	ACTIVE	SOT-23	DBV	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT6R	Samples
SN74AUP1T98DCKR	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TKR	Samples
SN74AUP1T98DCKT	ACTIVE	SC70	DCK	6	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TKR	Samples
SN74AUP1T98DRYR	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	тк	Samples
SN74AUP1T98DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ТК	Samples
SN74AUP1T98YFPR	ACTIVE	DSBGA	YFP	6	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(TK2, TKN)	Samples
SN74AUP1T98YZPR	ACTIVE	DSBGA	YZP	6	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TKN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

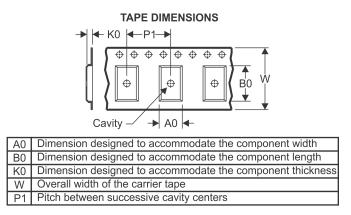
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

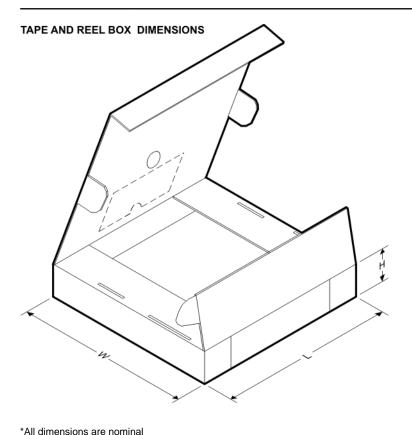

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

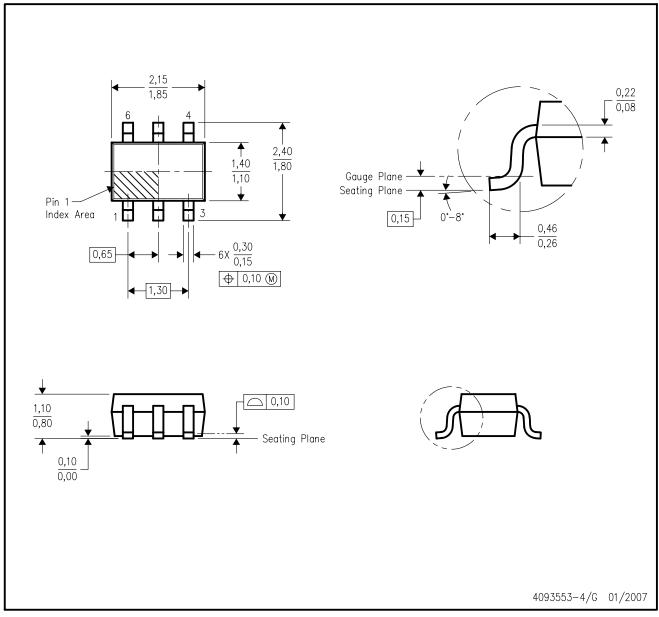
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1T98DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1T98DBVT	SOT-23	DBV	6	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1T98DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AUP1T98DCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AUP1T98DRYR	SON	DRY	6	5000	180.0	8.4	1.25	1.6	0.7	4.0	8.0	Q1
SN74AUP1T98DSFR	SON	DSF	6	5000	180.0	8.4	1.16	1.16	0.63	4.0	8.0	Q2
SN74AUP1T98YFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1
SN74AUP1T98YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

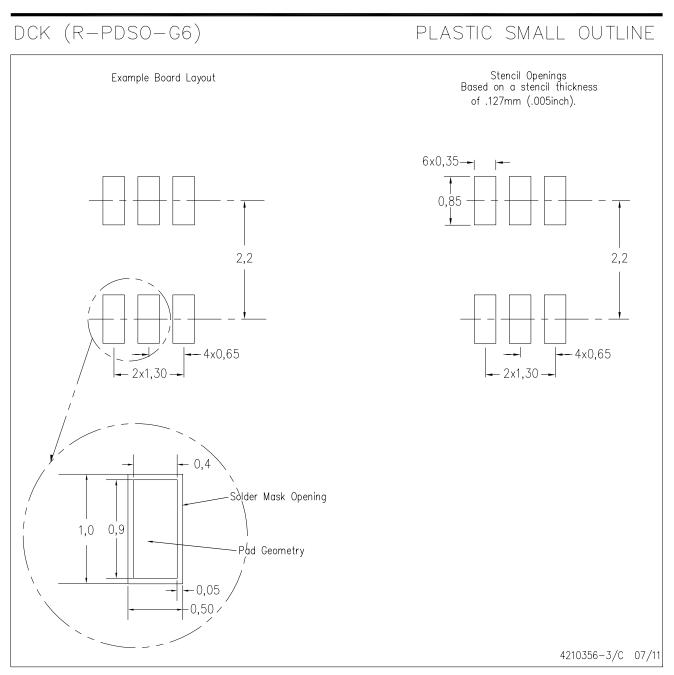
www.ti.com

PACKAGE MATERIALS INFORMATION


18-Jan-2020

All ultrensions are normal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1T98DBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74AUP1T98DBVT	SOT-23	DBV	6	250	202.0	201.0	28.0
SN74AUP1T98DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
SN74AUP1T98DCKT	SC70	DCK	6	250	202.0	201.0	28.0
SN74AUP1T98DRYR	SON	DRY	6	5000	202.0	201.0	28.0
SN74AUP1T98DSFR	SON	DSF	6	5000	202.0	201.0	28.0
SN74AUP1T98YFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0
SN74AUP1T98YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

DCK (R-PDSO-G6)

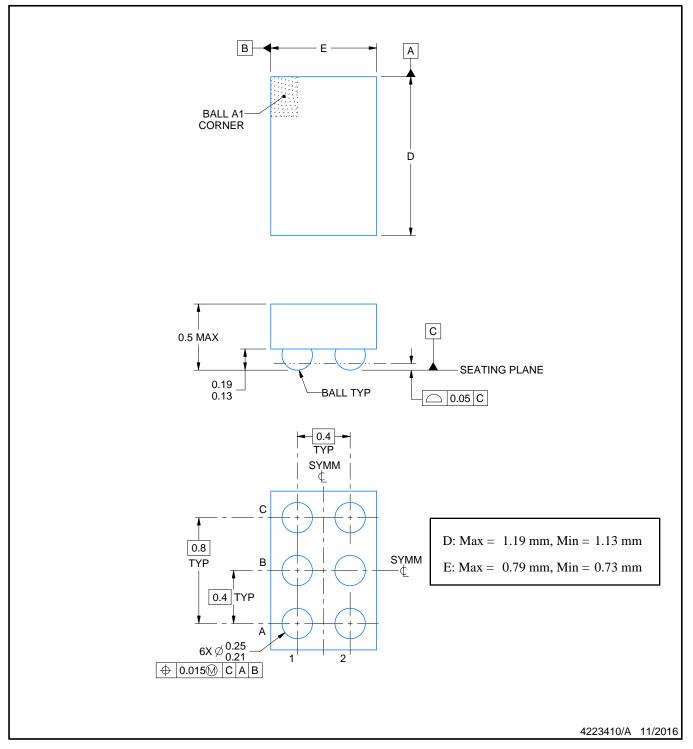

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


YFP0006

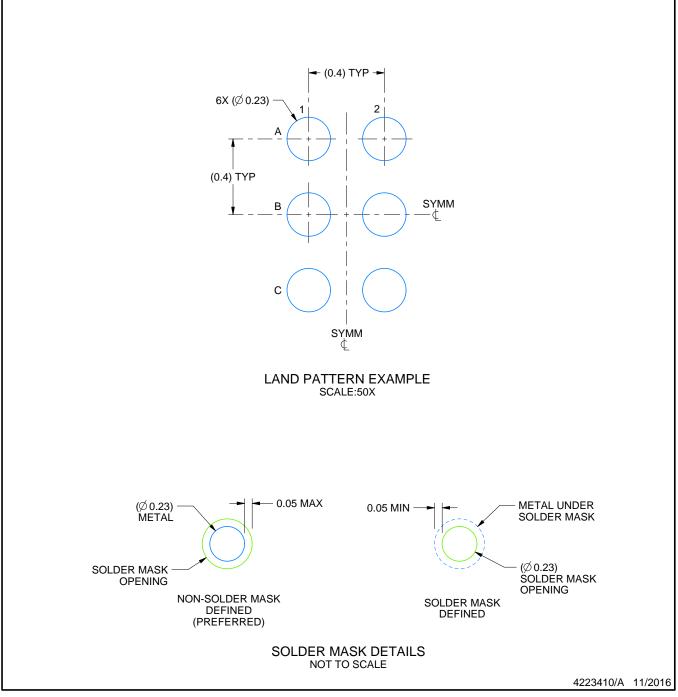
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YFP0006

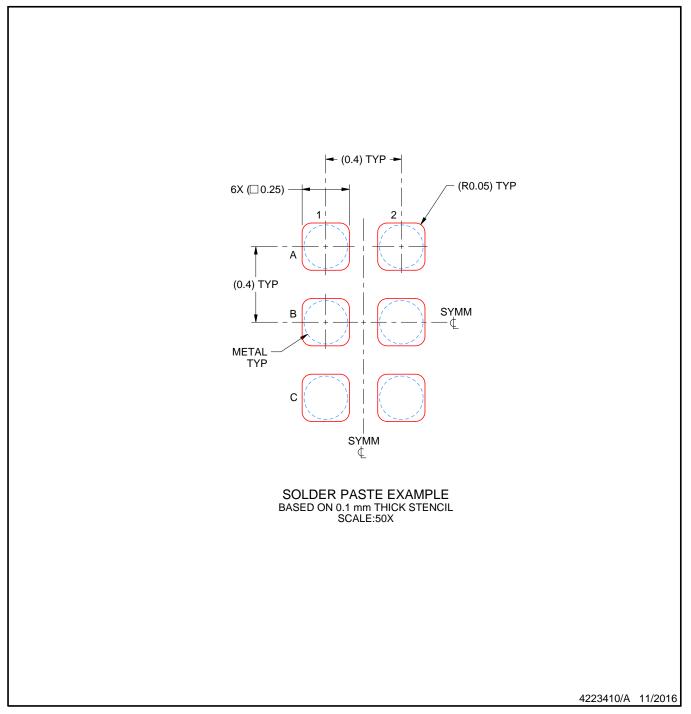
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YFP0006

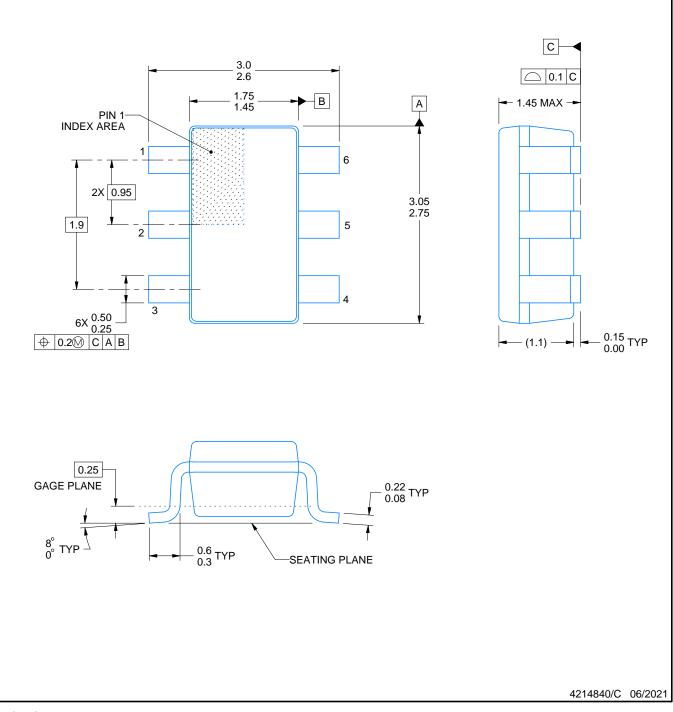
EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


DBV0006A

PACKAGE OUTLINE

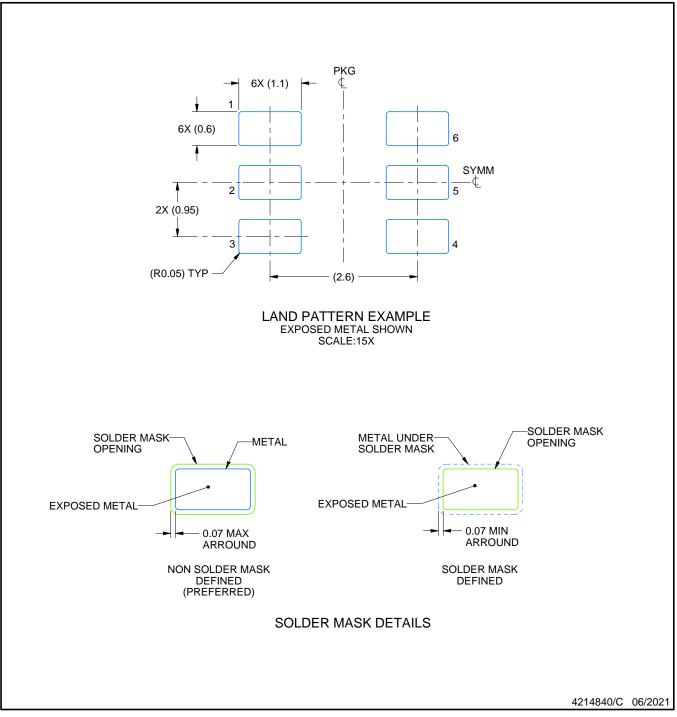
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.



DBV0006A

EXAMPLE BOARD LAYOUT

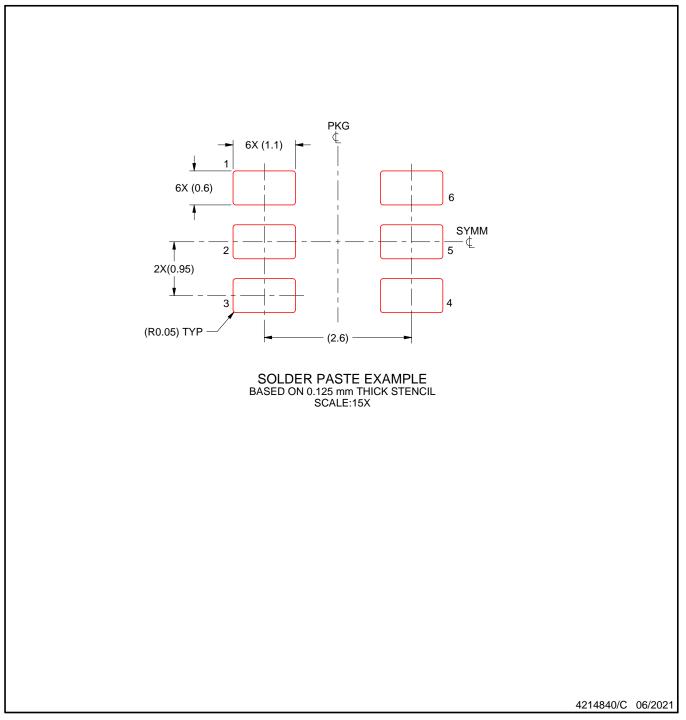
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBV0006A

EXAMPLE STENCIL DESIGN

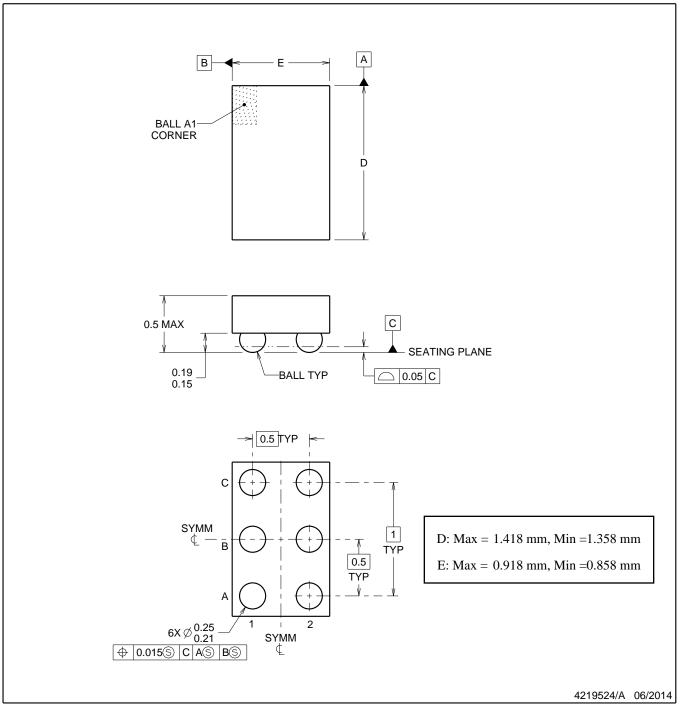
SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


YZP0006

PACKAGE OUTLINE

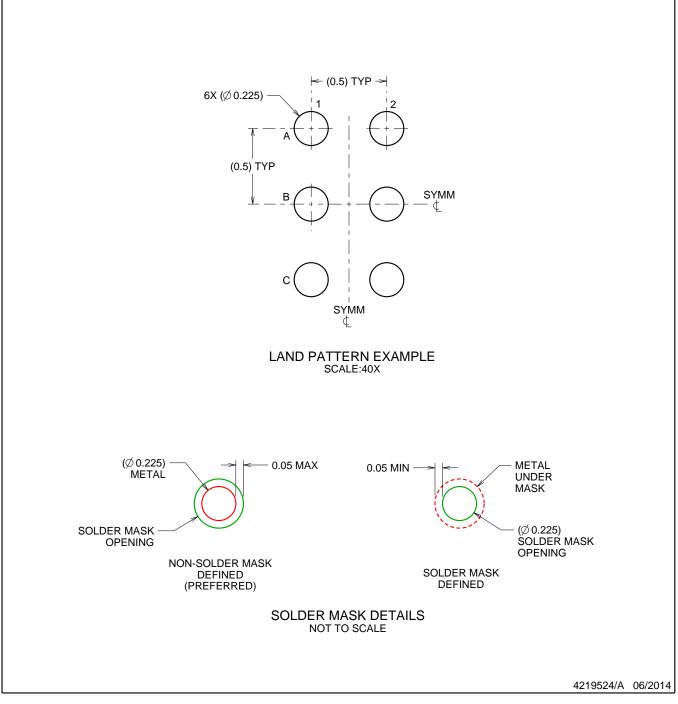
DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.



YZP0006

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).



YZP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

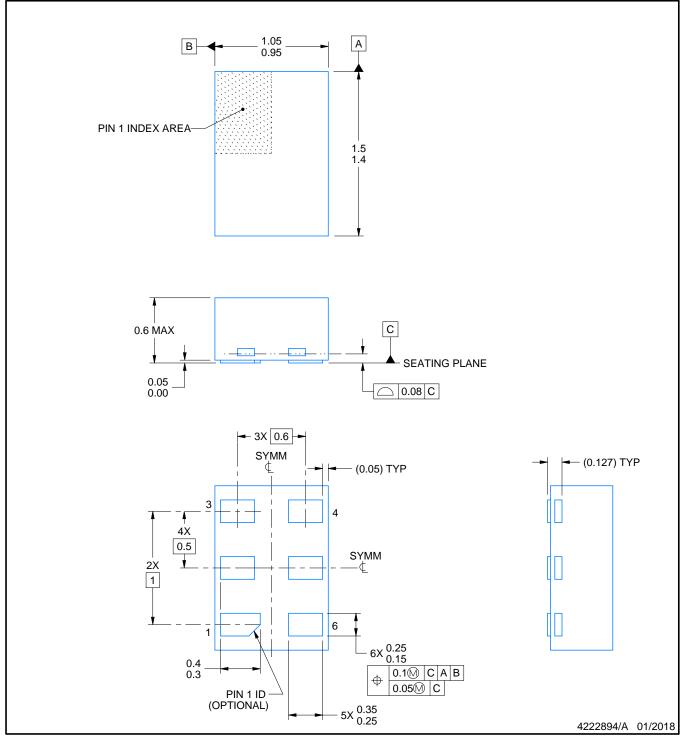
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G


DRY0006A

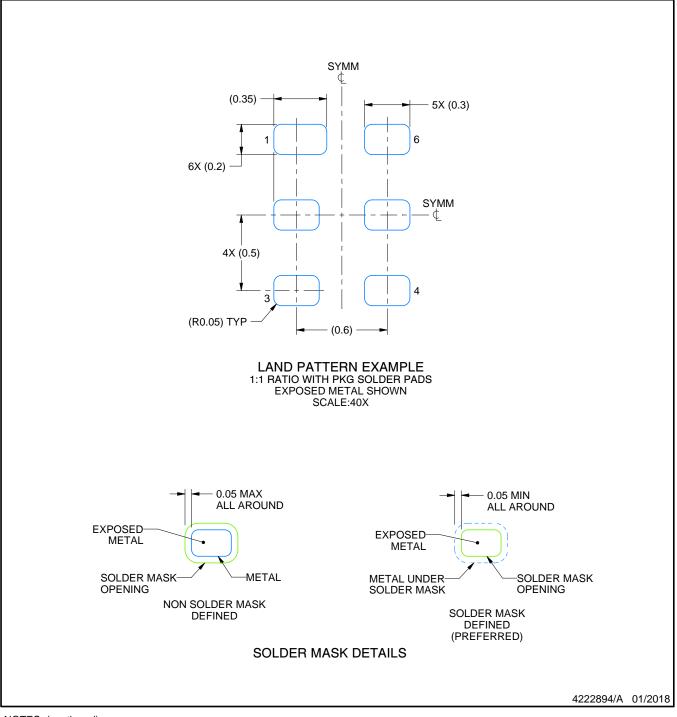
PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



DRY0006A

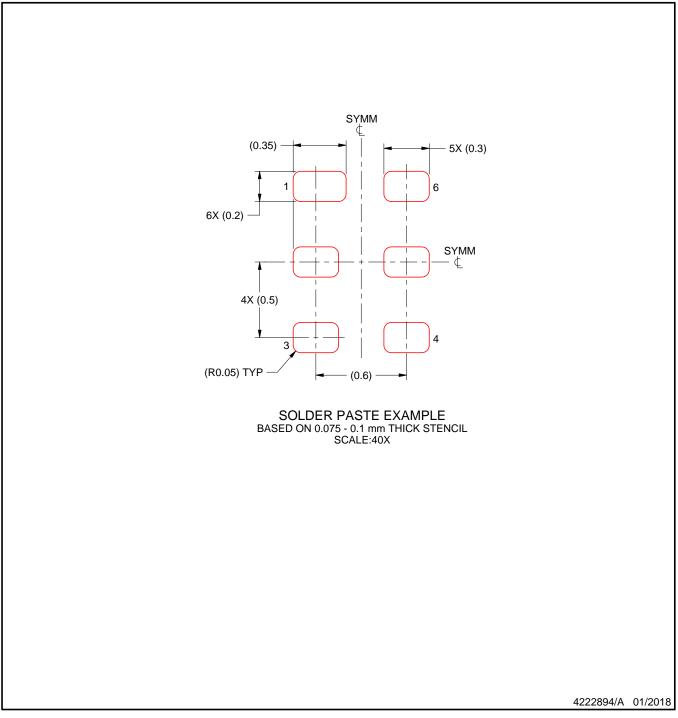
EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).



DRY0006A

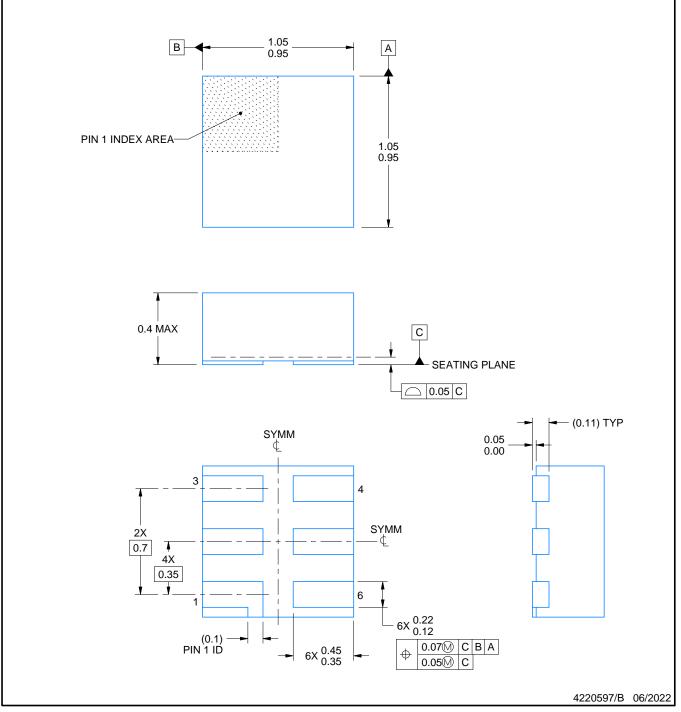
EXAMPLE STENCIL DESIGN

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DSF0006A

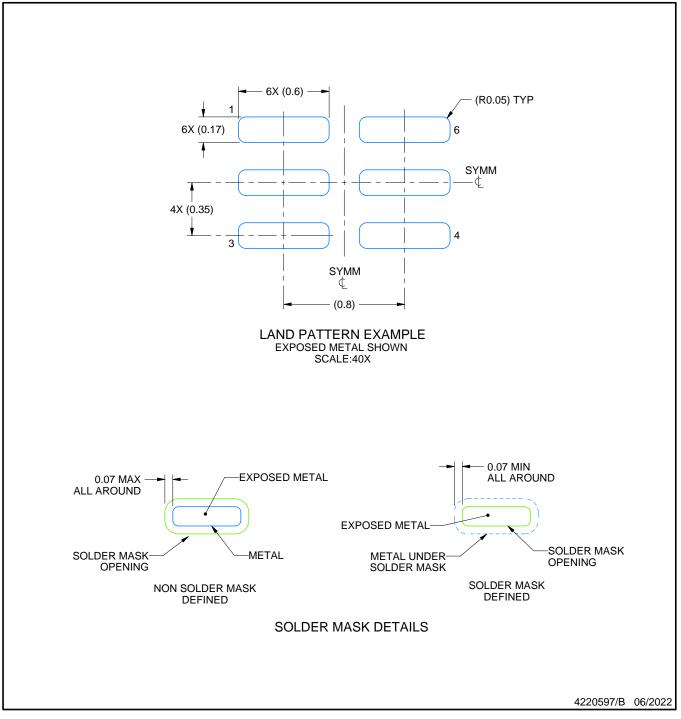
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.



DSF0006A

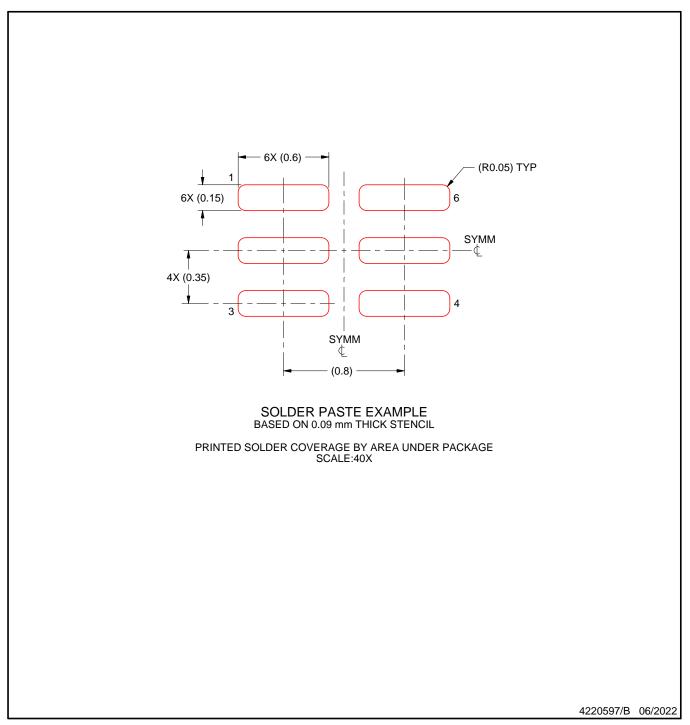
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



DSF0006A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated