## SN54HC161, SN74HC161 4-BIT SYNCHRONOUS BINARY COUNTERS

- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80- $\mu \mathrm{A}$ Max ICC
- Typical $\mathrm{t}_{\mathrm{pd}}=14 \mathrm{~ns}$
- $\pm 4$-mA Output Drive at 5 V


## SN54HC161 ... J OR W PACKAGE SN74HC161... D, N, NS, OR PW PACKAGE (TOP VIEW)

| R | ${ }_{1} \cup_{16}$ | $\mathrm{V}_{C C}$ |
| :---: | :---: | :---: |
| CLK | 215 | $5] \mathrm{RCO}$ |
| A | 314 | $1 Q_{A}$ |
| B | 413 | ${ }^{\text {a }} \mathrm{Q}_{\mathrm{B}}$ |
| C | 512 | ${ }^{1} Q_{C}$ |
| D | 11 | $1 \mathrm{Q}_{\mathrm{D}}$ |
| ENP | $7 \quad 10$ | ENT |
| GND | 8 | LOA |

- Low Input Current of $1 \mu \mathrm{~A}$ Max
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable


NC - No internal connection

## description/ordering information

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 'HC161 devices are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

ORDERING INFORMATION

| $\mathrm{T}_{\mathrm{A}}$ | PACKAGE $\dagger$ |  | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
| :---: | :---: | :---: | :---: | :---: |
| $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | PDIP - N | Tube of 25 | SN74HC161N | SN74HC161N |
|  | SOIC - D | Tube of 40 | SN74HC161D | HC161 |
|  |  | Reel of 2500 | SN74HC161DR |  |
|  |  | Reel of 250 | SN74HC161DT |  |
|  | SOP - NS | Reel of 2000 | SN74HC161NSR | HC161 |
|  | TSSOP - PW | Tube of 90 | SN74HC161PW | HC161 |
|  |  | Reel of 2000 | SN74HC161PWR |  |
|  |  | Reel of 250 | SN74HC161PWT |  |
| $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | CDIP - J | Tube of 25 | SNJ54HC161J | SNJ54HC161J |
|  | CFP - W | Tube of 150 | SNJ54HC161W | SNJ54HC161W |
|  | LCCC - FK | Tube of 55 | SNJ54HC161FK | SNJ54HC161FK |

$\dagger$ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

## SN54HC161, SN74HC161 <br> 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS297D - JANUARY 1996 - REVISED SEPTEMBER 2003

## description/ordering information (continued)

These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.
The clear function for the 'HC161 devices is asynchronous. A low level at the clear ( $\overline{\mathrm{CLR}})$ input sets all four of the flip-flop outputs low, regardless of the levels of the CLK, load ( $\overline{\mathrm{LOAD}}$ ), or enable inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are ENP, ENT, and a ripple-carry output (RCO). Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum ( 9 or 15 with $Q_{A}$ high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text { LOAD }}$ ) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.
logic diagram (positive logic)

$\dagger$ For simplicity, routing of complementary signals $\overline{\mathrm{LD}}$ and $\overline{\mathrm{CK}}$ is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.
Pin numbers shown are for the D, J, N, NS, PW, and W packages.

## SN54HC161, SN74HC161

 4-BIT SYNCHRONOUS BINARY COUNTERSSCLS297D - JANUARY 1996 - REVISED SEPTEMBER 2003
logic symbol, each D/T flip-flop

logic diagram, each D/T flip-flop (positive logic)

$\dagger$ The origins of $\overline{\mathrm{LD}}$ and $\overline{\mathrm{CK}}$ are shown in the logic diagram of the overall device.
typical clear, preset, count, and inhibit sequence
The following sequence is illustrated below:

1. Clear outputs to zero (asynchronous)
2. Preset to binary 12
3. Count to $13,14,15,0,1$, and 2
4. Inhibit


## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) $\dagger$

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0 \text { or } \mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}\right)(\text { see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \pm 20 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Continuous output current, } \mathrm{I}_{\mathrm{O}}\left(\mathrm{~V}_{\mathrm{O}}=0 \text { to } \mathrm{V}_{\mathrm{C}}\right) \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \pm 25 \mathrm{~mA} \\
& \text { Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } \pm 50 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{\text {JA }} \text { (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73² } \mathrm{C} / \mathrm{W} \\
& \text { N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 64^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { PW package ............................................. } 108^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. } \\
& \text { 2. The package thermal impedance is calculated in accordance with JESD 51-7. }
\end{aligned}
$$

recommended operating conditions (see Note 3)

|  |  |  |  | 4HC16 |  |  | 4HC16 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | NOM | MAX | MIN | NOM | MAX | UNIT |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply voltage |  | 2 | 5 | 6 | 2 | 5 | 6 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ | 1.5 |  |  | 1.5 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.15 |  |  | 3.15 |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ | 4.2 |  |  | 4.2 |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ |  |  | 0.5 |  |  | 0.5 |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  | 1.35 |  |  | 1.35 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ |  |  | 1.8 |  |  | 1.8 |  |
| $\mathrm{V}_{1}$ | Input voltage |  | 0 |  | $\mathrm{V}_{\mathrm{CC}}$ | 0 |  | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{O}}$ | Output voltage |  | 0 |  | $\mathrm{V}_{\mathrm{CC}}$ | 0 |  | $\mathrm{V}_{\mathrm{CC}}$ | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ |  |  | 1000 |  |  | 1000 |  |
| $\Delta t / \Delta v \ddagger$ | Input transition rise/fall time | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  | 500 |  |  | 500 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ |  |  | 400 |  |  | 400 |  |
| $\mathrm{T}_{\text {A }}$ | Operating free-air temperature |  | -55 |  | 125 | -40 |  | 85 | ${ }^{\circ} \mathrm{C}$ |

NOTE 3: All unused inputs of the device must be held at $\mathrm{V}_{\mathrm{CC}}$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
$\ddagger$ If this device is used in the threshold region (from $\mathrm{V}_{I L} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{I H} \min =1.5 \mathrm{~V}$ ), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

# SN54HC161, SN74HC161 4-BIT SYNCHRONOUS BINARY COUNTERS 

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER | TEST CONDITIONS |  | $\mathrm{V}_{\mathrm{Cc}}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | SN54HC161 |  | SN74HC161 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | MAX | MIN | MAX |  |
| $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{l} \mathrm{OH}=-20 \mu \mathrm{~A}$ |  | 2 V | 1.9 | 1.998 |  | 1.9 |  | 1.9 |  | V |
|  |  |  | 4.5 V | 4.4 | 4.499 |  | 4.4 |  | 4.4 |  |  |  |
|  |  |  | 6 V | 5.9 | 5.999 |  | 5.9 |  | 5.9 |  |  |  |
|  |  | $\mathrm{OH}=-4 \mathrm{~mA}$ | 4.5 V | 3.98 | 4.3 |  | 3.7 |  | 3.84 |  |  |  |
|  |  | $\mathrm{IOH}^{\prime}=-5.2 \mathrm{~mA}$ | 6 V | 5.48 | 5.8 |  | 5.2 |  | 5.34 |  |  |  |
| VOL | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ | $\mathrm{lOL}=20 \mu \mathrm{~A}$ | 2 V |  | 0.002 | 0.1 |  | 0.1 |  | 0.1 | V |  |
|  |  |  | 4.5 V |  | 0.001 | 0.1 |  | 0.1 |  | 0.1 |  |  |
|  |  |  | 6 V |  | 0.001 | 0.1 |  | 0.1 |  | 0.1 |  |  |
|  |  | $\mathrm{IOL}=4 \mathrm{~mA}$ | 4.5 V |  | 0.17 | 0.26 |  | 0.4 |  | 0.33 |  |  |
|  |  | $\mathrm{IOL}=5.2 \mathrm{~mA}$ | 6 V |  | 0.15 | 0.26 |  | 0.4 |  | 0.33 |  |  |
| 1 | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or 0 |  | 6 V |  | $\pm 0.1$ | $\pm 100$ |  | $\pm 1000$ |  | $\pm 1000$ | nA |  |
| ICC | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \quad \mathrm{I} \mathrm{O}=0$ |  | 6 V |  |  | 8 |  | 160 |  | 80 | $\mu \mathrm{A}$ |  |
| $\mathrm{C}_{\mathrm{i}}$ |  |  | 2 V to 6 V |  | 3 | 10 |  | 10 |  | 10 | pF |  |

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

|  |  |  | VCC | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | SN54HC161 |  | SN74HC161 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |
| $\mathrm{f}_{\text {clock }}$ | Clock frequency |  | 2 V |  | 6 |  | 4.2 |  | 5 | MHz |
|  |  |  | 4.5 V |  | 31 |  | 21 |  | 25 |  |
|  |  |  | 6 V |  | 36 |  | 25 |  | 29 |  |
| $t_{w}$ | Pulse duration | CLK high or low | 2 V | 80 |  | 120 |  | 100 |  | ns |
|  |  |  | 4.5 V | 16 |  | 24 |  | 20 |  |  |
|  |  |  | 6 V | 14 |  | 20 |  | 17 |  |  |
|  |  |  | 2 V | 80 |  | 120 |  | 100 |  |  |
|  |  | $\overline{\mathrm{CLR}}$ low | 4.5 V | 16 |  | 24 |  | 20 |  |  |
|  |  |  | 6 V | 14 |  | 20 |  | 17 |  |  |
| $t_{\text {su }}$ | Setup time before CLK $\uparrow$ | A, B, C, or D | 2 V | 150 |  | 225 |  | 190 |  | ns |
|  |  |  | 4.5 V | 30 |  | 45 |  | 38 |  |  |
|  |  |  | 6 V | 26 |  | 38 |  | 32 |  |  |
|  |  |  | 2 V | 135 |  | 205 |  | 170 |  |  |
|  |  | $\overline{\text { LOAD }}$ low | 4.5 V | 27 |  | 41 |  | 34 |  |  |
|  |  |  | 6 V | 23 |  | 35 |  | 29 |  |  |
|  |  |  | 2 V | 170 |  | 255 |  | 215 |  |  |
|  |  | ENP, ENT | 4.5 V | 34 |  | 51 |  | 43 |  |  |
|  |  |  | 6 V | 29 |  | 43 |  | 37 |  |  |
|  |  | $\overline{\mathrm{CLR}}$ inactive | 2 V | 125 |  | 190 |  | 155 |  |  |
|  |  |  | 4.5 V | 25 |  | 38 |  | 31 |  |  |
|  |  |  | 6 V | 21 |  | 32 |  | 26 |  |  |
| $t^{\text {h }}$ | Hold time, all synchronous inputs after CLK $\uparrow$ |  | 2 V | 0 |  | 0 |  | 0 |  | ns |
|  |  |  | 4.5 V | 0 |  | 0 |  | 0 |  |  |
|  |  |  | 6 V | 0 |  | 0 |  | 0 |  |  |

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

| PARAMETER | FROM(INPUT) | TO (OUTPUT) | VCc | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | SN54HC161 |  | SN74HC161 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | TYP | MAX | MIN | MAX | MIN | MAX |  |
| ${ }^{\text {fmax }}$ |  |  | 2 V | 6 | 14 |  | 4.2 |  | 5 |  | MHz |
|  |  |  | 4.5 V | 31 | 40 |  | 21 |  | 25 |  |  |
|  |  |  | 6 V | 36 | 44 |  | 25 |  | 29 |  |  |
| $t_{\text {pd }}$ | CLK | RCO | 2 V |  | 83 | 215 |  | 325 |  | 270 | ns |
|  |  |  | 4.5 V |  | 24 | 43 |  | 65 |  | 54 |  |
|  |  |  | 6 V |  | 20 | 37 |  | 55 |  | 46 |  |
|  |  | Any Q | 2 V |  | 80 | 205 |  | 310 |  | 255 |  |
|  |  |  | 4.5 V |  | 25 | 41 |  | 62 |  | 51 |  |
|  |  |  | 6 V |  | 21 | 35 |  | 53 |  | 43 |  |
|  | ENT | RCO | 2 V |  | 62 | 195 |  | 295 |  | 245 |  |
|  |  |  | 4.5 V |  | 17 | 39 |  | 59 |  | 49 |  |
|  |  |  | 6 V |  | 14 | 33 |  | 50 |  | 42 |  |
| tPHL | $\overline{C L R}$ | Any Q | 2 V |  | 105 | 210 |  | 315 |  | 265 | ns |
|  |  |  | 4.5 V |  | 21 | 42 |  | 63 |  | 53 |  |
|  |  |  | 6 V |  | 18 | 36 |  | 54 |  | 45 |  |
|  |  | RCO | 2 V |  | 110 | 220 |  | 330 |  | 275 |  |
|  |  |  | 4.5 V |  | 22 | 44 |  | 66 |  | 55 |  |
|  |  |  | 6 V |  | 19 | 37 |  | 56 |  | 47 |  |
| $t_{t}$ |  | Any | 2 V |  | 38 | 75 |  | 110 |  | 95 | ns |
|  |  |  | 4.5 V |  | 8 | 15 |  | 22 |  | 19 |  |
|  |  |  | 6 V |  | 6 | 13 |  | 19 |  | 16 |  |

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

|  | PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{pd}}$ | Power dissipation capacitance | No load | 60 | pF |

## PARAMETER MEASUREMENT INFORMATION



Figure 1. Load Circuit and Voltage Waveforms

## SN54HC161, SN74HC161 <br> 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS297D - JANUARY 1996 - REVISED SEPTEMBER 2003

## APPLICATION INFORMATION

## n-bit synchronous counters

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The 'HC161 devices count in binary. Virtually any count mode (modulo-N, $\mathrm{N}_{1}$-to- $\mathrm{N}_{2}$, $\mathrm{N}_{1}$-to-maximum) can be used with this fast look-ahead circuit.

The application circuit shown in Figure 2 is not valid for clock frequencies above 18 MHz (at $25^{\circ} \mathrm{C}$ and $\left.4.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}\right)$. The reason for this is that there is a glitch that is produced on the second stage's RCO and every succeeding stage's RCO. This glitch is common to all HC vendors that Texas Instruments has evaluated, in addition to the bipolar equivalents (LS, ALS, AS).

APPLICATION INFORMATION


Figure 2

## APPLICATION INFORMATION

The glitch on RCO is caused because the propagation delay of the rising edge of $Q_{A}$ of the second stage is shorter than the propagation delay of the falling edge of ENT. RCO is the product of ENT, $Q_{A}, Q_{B}, Q_{C}$, and $Q_{D}$ ( $E N T \times Q_{A} \times Q_{B} \times Q_{C} \times Q_{D}$ ). The resulting glitch is about 7-12 ns in duration. Figure 3 shows the condition in which the glitch occurs. For simplicity, only two stages are being considered, but the results can be applied to other stages. $Q_{B}, Q_{C}$, and $Q_{D}$ of the first and second stage are at logic one, and $Q_{A}$ of both stages are at logic zero (1110 1110) after the first clock pulse. On the rising edge of the second clock pulse, $Q_{A}$ and RCO of the first stage go high. On the rising edge of the third clock pulse, $Q_{A}$ and $R C O$ of the first stage return to a low level, and $Q_{A}$ of the second stage goes to a high level. At this time, the glitch on RCO of the second stage appears because of the race condition inside the chip.


Figure 3
The glitch causes a problem in the next stage (stage three) if the glitch is still present when the next rising clock edge appears (clock pulse 4). To ensure that this does not happen, the clock frequency must be less than the inverse of the sum of the clock-to-RCO propagation delay and the glitch duration $\left(\mathrm{t}_{\mathrm{g}}\right)$. In other words, $f_{\max }=1 /\left(\mathrm{t}_{\text {pd }}\right.$ CLK-to-RCO $\left.+\mathrm{t}_{\mathrm{g}}\right)$. For example, at $25^{\circ} \mathrm{C}$ at $4.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$, the clock-to-RCO propagation delay is 43 ns and the maximum duration of the glitch is 12 ns . Therefore, the maximum clock frequency that the cascaded counters can use is 18 MHz . The following tables contain the $f_{\text {clock }}, t_{w}$, and $f_{\text {max }}$ specifications for applications that use more than two 'HC161 devices cascaded together.

## APPLICATION INFORMATION

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Note 4)

| PARAMETER | FROM (INPUT) | TO (OUTPUT) | $V_{C C}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | SN54HC161 |  | SN74HC161 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |
| ${ }^{\prime}$ max |  |  | 2 V | 3.6 |  | 2.5 |  | 2.9 |  | MHz |
|  |  |  | 4.5 V | 18 |  | 12 |  | 14 |  |  |
|  |  |  | 6 V | 21 |  | 14 |  | 17 |  |  |

NOTE 4: These limits apply only to applications that use more than two 'HC161 devices cascaded together.
If the 'HC161 devices are used as a single unit, or only two cascaded together, then the maximum clock frequency that the device can use is not limited because of the glitch. In these situations, the device can be operated at the maximum specifications.
A glitch can appear on RCO of a single 'HC161 device, depending on the relationship of ENT to CLK. Any application that uses RCO to drive any input except an ENT of another cascaded 'HC161 device must take this into consideration.

PACKAGE OPTION ADDENDUM
INSTRUMENTS
www.ti.com
13-Jul-2022

## PACKAGING INFORMATION

| Orderable Device | Status <br> (1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan <br> (2) | Lead finish/ Ball material <br> (6) | MSL Peak Temp <br> (3) | Op Temp ( ${ }^{\circ} \mathrm{C}$ ) | Device Marking (4/5) | Samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5962-8407501VEA | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS \& Green | SNPB | N/A for Pkg Type | -55 to 125 | $\begin{aligned} & 5962-8407501 \mathrm{VE} \\ & \text { A } \\ & \text { SNV54HC161J } \\ & \hline \end{aligned}$ | Samples |
| 84075012A | ACTIVE | LCCC | FK | 20 | 1 | Non-RoHS \& Green | SNPB | N / A for Pkg Type | -55 to 125 | $\begin{aligned} & \text { 84075012A } \\ & \text { SNJ54HC } \\ & \text { 161FK } \end{aligned}$ | Samples |
| 8407501EA | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS \& Green | SNPB | N / A for Pkg Type | -55 to 125 | $\begin{aligned} & \text { 8407501EA } \\ & \text { SNJ54HC161J } \end{aligned}$ | Samples |
| 8407501FA | ACTIVE | CFP | W | 16 | 1 | Non-RoHS \& Green | SNPB | N/ A for Pkg Type | -55 to 125 | 8407501FA <br> SNJ54HC161W | Samples |
| JM38510/66302BEA | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS \& Green | SNPB | N / A for Pkg Type | -55 to 125 | $\begin{aligned} & \text { JM38510/ } \\ & \text { 66302BEA } \end{aligned}$ | Samples |
| M38510/66302BEA | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS \& Green | SNPB | N / A for Pkg Type | -55 to 125 | $\begin{aligned} & \text { JM38510/ } \\ & \text { 66302BEA } \end{aligned}$ | Samples |
| SN54HC161J | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS \& Green | SNPB | N / A for Pkg Type | -55 to 125 | SN54HC161J | Samples |
| SN74HC161D | ACTIVE | SOIC | D | 16 | 40 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |
| SN74HC161DG4 | ACTIVE | SOIC | D | 16 | 40 | TBD | Call TI | Call TI | -40 to 85 |  | Samples |
| SN74HC161DR | ACTIVE | SOIC | D | 16 | 2500 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |
| SN74HC161DRE4 | ACTIVE | SOIC | D | 16 | 2500 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |
| SN74HC161DT | ACTIVE | SOIC | D | 16 | 250 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |
| SN74HC161N | ACTIVE | PDIP | N | 16 | 25 | RoHS \& Green | NIPDAU | N / A for Pkg Type | -40 to 85 | SN74HC161N | Samples |
| SN74HC161NE4 | ACTIVE | PDIP | N | 16 | 25 | TBD | Call TI | Call TI | -40 to 85 |  | Samples |
| SN74HC161NSR | ACTIVE | SO | NS | 16 | 2000 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |
| SN74HC161PW | ACTIVE | TSSOP | PW | 16 | 90 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |
| SN74HC161PWR | ACTIVE | TSSOP | PW | 16 | 2000 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |


| Orderable Device | Status <br> (1) | Package Type | Package Drawing | Pins | Package Qty | Eco Plan <br> (2) | Lead finish/ Ball material <br> (6) | MSL Peak Temp <br> (3) | Op Temp ( ${ }^{\circ} \mathrm{C}$ ) | Device Marking (4/5) | Samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74HC161PWT | ACTIVE | TSSOP | PW | 16 | 250 | RoHS \& Green | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC161 | Samples |
| SNJ54HC161FK | ACTIVE | LCCC | FK | 20 | 1 | Non-RoHS \& Green | SNPB | N / A for Pkg Type | -55 to 125 | $\begin{aligned} & \text { 84075012A } \\ & \text { SNJ54HC } \\ & \text { 161FK } \end{aligned}$ | Samples |
| SNJ54HC161J | ACTIVE | CDIP | J | 16 | 1 | Non-RoHS \& Green | SNPB | N / A for Pkg Type | -55 to 125 | $\begin{aligned} & \text { 8407501EA } \\ & \text { SNJ54HC161J } \end{aligned}$ | Samples |
| SNJ54HC161W | ACTIVE | CFP | W | 16 | 1 | Non-RoHS \& Green | SNPB | N/A for Pkg Type | -55 to 125 | $\begin{aligned} & \text { 8407501FA } \\ & \text { SNJ54HC161W } \end{aligned}$ | Samples |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN54HC161, SN54HC161-SP, SN74HC161 :

- Catalog : SN74HC161, SN54HC161
- Military : SN54HC161
- Space : SN54HC161-SP

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications
- Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application


## TAPE AND REEL INFORMATION



TAPE DIMENSIONS


| A0 | Dimension designed to accommodate the component width |
| :--- | :--- |
| B0 | Dimension designed to accommodate the component length |
| K0 | Dimension designed to accommodate the component thickness |
| W | Overall width of the carrier tape |
| P1 | Pitch between successive cavity centers |

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package <br> Type | Package <br> Drawing | Pins | SPQ | Reel <br> Diameter <br> $(\mathbf{m m})$ | Reel <br> Width <br> W1 $(\mathbf{m m})$ | A0 <br> $(\mathbf{m m})$ | B0 <br> $(\mathbf{m m})$ | K0 <br> $(\mathbf{m m})$ | P1 <br> $(\mathbf{m m})$ | W <br> $(\mathbf{m m})$ | Pin1 <br> Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74HC161DR | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 |
| SN74HC161NSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 |
| SN74HC161PWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| SN74HC161PWT | TSSOP | PW | 16 | 250 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |


*All dimensions are nominal

| Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74HC161DR | SOIC | D | 16 | 2500 | 340.5 | 336.1 | 32.0 |
| SN74HC161NSR | SO | NS | 16 | 2000 | 356.0 | 356.0 | 35.0 |
| SN74HC161PWR | TSSOP | PW | 16 | 2000 | 356.0 | 356.0 | 35.0 |
| SN74HC161PWT | TSSOP | PW | 16 | 250 | 356.0 | 356.0 | 35.0 |

## TUBE



- B - Alignment groove width
*All dimensions are nominal

| Device | Package Name | Package Type | Pins | SPQ | L(mm) | W (mm) | T $(\boldsymbol{\mu m})$ | B (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 84075012A | FK | LCCC | 20 | 1 | 506.98 | 12.06 | 2030 | NA |
| 8407501FA | W | CFP | 16 | 1 | 506.98 | 26.16 | 6220 | NA |
| SN74HC161D | D | SOIC | 16 | 40 | 507 | 8 | 3940 | 4.32 |
| SN74HC161N | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 |
| SN74HC161N | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 |
| SN74HC161PW | PW | TSSOP | 16 | 90 | 530 | 10.2 | 3600 | 3.5 |
| SNJ54HC161FK | FK | LCCC | 20 | 1 | 506.98 | 12.06 | 2030 | NA |
| SNJ54HC161W | W | CFP | 16 | 1 | 506.98 | 26.16 | 6220 | NA |



NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm , per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm , per side.


NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:7X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004

D (R-PDSO-G16)


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)


NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.


NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN


| DIM PINS ** | 14 | 16 | 20 | 24 |
| :---: | :---: | :---: | :---: | :---: |
| A MAX | 10,50 | 10,50 | 12,90 | 15,30 |
| A MIN | 9,90 | 9,90 | 12,30 | 14,70 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)


4040180-3/F 04/14
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP2-F16


| DIM PINS ** | 14 | 16 | 18 | 20 |
| :---: | :---: | :---: | :---: | :---: |
| A | 0.300 <br> $(7,62)$ <br> BSC |
| B MAX | 0.785 <br> $(19,94)$ | .840 <br> $(21,34)$ | 0.960 <br> $(24,38)$ | 1.060 <br> $(26,92)$ |
| B MIN | - | - | - | - |
| C MAX | 0.300 <br> $(7,62)$ | 0.300 <br> $(7,62)$ | 0.310 <br> $(7,87)$ | 0.300 <br> $(7,62)$ |
| C MIN | 0.245 <br> $(6,22)$ | 0.245 <br> $(6,22)$ | 0.220 <br> $(5,59)$ | 0.245 <br> $(6,22)$ |



NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN


NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

