
Application Report
SPRA568A - February 2002

TMS320C6000 EMIF to External Flash Memory
Kyle Castille Digital Signal Processing Solutions

ABSTRACT

Interfacing external flash memory to the Texas Instruments TMS320C6000 digital signal
processor (DSP) is simple compared to previous generations of TI DSPs. The TMS320C6000
advanced external memory interface (EMIF) provides a glueless interface to a variety of
external memory devices. The sample code described in this application report can be
downloaded from http://www.ti.com/lit/zip/SPRA568.

This document describes the following:

• EMIF control registers and asynchronous interface signals
• Flash functionality and performance considerations
• Full example using AMD’s AM29LV800
• Full example using AMD’s AM29LV040

1 Overview of EMIF
Contents

. 3
1.1 EMIF Signal Descriptions.. 3
1.2 EMIF Registers ... 5

1.2.1 CE Space Control Registers.. 5
1.3 C620x/C670x EMIF ROM Modes.. 6
1.4 C6211/C6711/C64x EMIF x8/x16/x32/x64 Asynchronous Modes ... 7

1.4.1 Byte Lane Alignment on the C6211/C6711 EMIF ... 7
1.4.2 C64x Byte-Lane Alignment .. 8

2 Flash Memory Interface ... 9
2.1 Flash Functionality and Common Commands .. 11

2.1.1 Read/Reset Command
2.1.2 Chip Erase Command

. 12
. 12

2.1.3 Program Command ... 13
2.1.4 Other Commands .. 13

2.2 Device Status ... 13
2.3 Byte Addressing and Shifting on the EA Bus .. 15
2.4 Programmable ASRAM Parameters ... 17
2.5 Margin Considerations
2.6 Asynchronous Reads

. 17
. 18

2.6.1 Setting Read Parameters for a Specific Flash Memory ... 20
2.7 Asynchronous Writes .. 21

2.7.1 Setting Write Parameters for a Specific Asynchronous SRAM 23

TMS320C6000 is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

1

http://www.ti.com/lit/zip/SPRA568

SPRA568A

2 TMS320C6000 EMIF to External Flash Memory

2.8 Read-to-Write Timing for C6211/C6711/C64x... 23
2.8.1 Setting TA Parameters for a Specific Asynchronous SRAM 24
2.8.2 MTYPE Setting for the C620x/C670x .. 24
2.8.3 MTYPE Setting for the C6211/C6711/C64x .. 24

3 Full Example for Programming AMD’s AM29LV800-90 (ARDY Interface) 24
3.1 Hardware Interface ... 25
3.2 Register Configuration .. 25

3.2.1 Read Calculations ... 26
3.2.2 Write Calculations ... 27

3.3 Software Control ... 28
3.3.1 Read Operation... 28
3.3.2 Write Operation ... 28

4 Full Example for Programming AMD’s AM29LV040-70.. 29
4.1 Hardware Interface ... 29

4.1.1 Read Calculations ... 30
4.1.2 Write Calculations ... 31

4.2 Software Control ... 32
4.2.1 Read Operation... 32
4.2.2 Write Operation ... 32

5 References .. 34
Appendix A Sample Code for Programming AM29LV800B (ARDY Interface) 35
Appendix B Sample Code for Programming AM29LV040... 39

List of Figures
Figure 1. Basic Block Diagram of C6000 EMIF ... 3
Figure 2. C6201/C6202/C6701 EMIF CE Space Control Register Diagram .. 5
Figure 3. C6211/C6711/C64x EMIF CE Space Control Register Diagram ... 5
Figure 4. Byte Lane Alignment vs. Endianness on the C6211/C6711 .. 8
Figure 5. EMIFA (64-Bit Bus) Byte Alignment by Endianness
Figure 6. EMIFB (16-bit Bus) Byte Alignment by Endianness

. 8

. 9
Figure 7. EMIF 8-/16-Bit Flash Interface With ARDY Interface (16-Bit Mode) 10
Figure 8. EMIF 8-Bit Flash Interface Without ARDY Interface ... 11
Figure 9. Program Command Without ARDY Interface – Software Monitoring 14
Figure 10. Program Command With ARDY Interface – Hardware Monitoring...................................... 15
Figure 11. C620x/C670x Asynchronous Read Timing Example (1/2/1) ... 19
Figure 12. C6211/C6711/C64x Asynchronous Read Timing Example (1/2/1) 20
Figure 13. C620x/C670x Asynchronous Write Timing Example (1/1/1) ... 22
Figure 14. C6211/C6711/C64x Asynchronous Write Timing Example (1/1/1) 22
Figure 15. Turnaround Time on C6211/C6711/C64x ... 23
Figure 16. EMIF CE1 Space Control Register Diagram for AM29LV800-90 .. 27
Figure 17. Erase Chip and Program Command Flow Charts ... 28
Figure 18. EMIF CE1 Space Control Register Diagram for AM29LV040-70 .. 31
Figure 19. Erase Chip and Program Command Flow Charts ... 32
Figure 20. Data Poll Flow Chart .. 33

SPRA568A

TMS320C6000 EMIF to External Flash Memory 3

List of Tables
Table 1. EMIF Signal Descriptions: Shared Signals and Asynchronous Signals 4
Table 2. EMIF Memory Mapped Registers .. 5
Table 3. EMIF CE Space Control Registers Bitfield Description... 6
Table 4. EMIF Asynchronous Interface Pins .. 10
Table 5. Flash Commands for AMD’s AM29LV800B Devices
Table 6. Flash Commands for AMD’s AM29LV040B Devices

. 11

. 12
Table 7. Byte Address to EA Mapping for Asynchronous Memory Widths ... 16
Table 8. Example of Write to Flash Memory and Address Shifting ... 16
Table 9. Recommended Timing Margin ... 17
Table 10. EMIF – Input Timing Requirements (Input Data) .. 18
Table 11. EMIF – Output Timing Characteristics (Data, Address, Control) ... 18
Table 12. ASRAM – Input Timing Requirement ... 18
Table 13. ASRAM – Output Timing Characteristics ... 18
Table 14. C6201B EMIF – Input Requirements ... 25
Table 15. C6201B EMIF – Output Timing Characteristics .. 25
Table 16. ASRAM Input Requirements From EMIF for AM29LV800-90 ... 26
Table 17. ASRAM – Output Timing Characteristics for AM29LV800-90 ... 26
Table 18. C6201B EMIF – Input Requirements ... 29
Table 19. C6201B EMIF – Output Timing Characteristics .. 29
Table 20. Input Requirements for AM29LV040-70 ... 30
Table 21. Output Timing Characteristics for AM29LV040-70

1 Overview of EMIF
1.1 EMIF Signal Descriptions

. 30

Figure 1 shows a basic block diagram of the EMIF asynchronous interface. The EMIF is the
interface between external memory and the other internal units of the C6000. The signals
described in Table 1 focus on the asynchronous interface and the shared interface signals.

ED[31:0]
EA[21:2]

CE[3:0]

BE[3:0]

AWE
ARE
AOE
ARDY

† The C64x has two EMIFs (EMIFA and EMIFB). A prefix “A” can be placed in front of a signal name indicating it is an EMIFA signal whereas a
prefix “B” indicates an EMIFB signal. In generic EMIF areas of discussion throughout this document, the prefix “A” and “B” may be omitted from
the signal name.

‡ MUXed with SDRAM and SBSRAM pins on C621x/C671x/C64x

Figure 1. Basic Block Diagram of C6000 EMIF†

C6000 is a trademark of Texas Instruments.

HOLD
HOLDA

External
Memory
Interface
(EMIF)

Bu
s

Ho
ld

SD

RA
M

Sh

ar
ed

 b
y

Al
l

Ex
te

rn
al

 In
te

rfa
ce

s
In

te
rf

ac
e‡

In

te
rf

ac
e

SPRA568A

4 TMS320C6000 EMIF to External Flash Memory

Table 1. EMIF Signal Descriptions: Shared Signals and Asynchronous Signals†

C620x/
C670x
Interface

C61x/
C671x
Interface

C64x EMIFA
Interface

C64x EMIFB
Interface (I/O/Z) Description

CLKOUT1 ECLKOUT AECLKOUT1 BECLKOUT2 O Clock. Used as asynchronous interface timing
reference.

ED(31:0) ED(31:0) AED(63:0) BED(15:0) I/O/Z Data I/O. Data input/output from external memories

and peripherals.

EA(21:2) EA(21:2) AEA(22:3) BEA(20:1) O/Z External address output. Drives the specified bits of
the byte address.

CE0 CE0 ACE0 BCE0 O/Z External CE0 chip-select. Active-low chip-select for
CE space 0.

CE1 CE1 ACE1 BCE1 O/Z External CE1 chip-select. Active-low chip-select for
CE space 1.

CE2 CE2 ACE2 BCE2 O/Z External CE2 chip-select. Active-low chip-select for
CE space 2.

CE3 CE3 ACE3 BCE3 O/Z External CE3 chip-select. Active-low chip-select for
CE space 3.

BE(3:0) BE(3:0) ABE(7:0) BBE(1:0) O/Z Byte enables. Active-low byte strobes. Individual bytes
and halfwords can be selected for both read and write
cycles. Decoded from 2 LSBs (least significant bits) of
the byte address.

ARDY ARDY AARDY BARDY I Ready. Asynchronous ready input used to insert wait
states for slow memories and peripherals, such as
flash memory.

AOE AOE/
SDRAS/
SSOE

AWE AWE/
SDWE/
SSWE

ARE ARE/
SDCAS/
SSADS

AAOE/ASDR
AS/ ASOE

AAWE/
ASDWE/
ASWE

AARE/
ASDCAS/
ASADS/
ASRE

BAOE/
BSDRAS/
BSOE

BAWE/
BSDWE/
BSWE

BARE/
BSDCAS/
BSADS/
BSRE

O/Z Output enable. Active-low output enable for
asynchronous memory interface.

O/Z Write strobe. Active-low write strobe for asynchronous
memory interface.

O/Z Read strobe. Active-low read strobe for asynchronous
memory interface.

HOLD HOLD AHOLD BHOLD I Active-low external bus-hold (3-state) request

HOLDA HOLDA AHOLDA BHOLDA O Active-low external bus-hold acknowledge

† The C64x has two EMIFs (EMIFA and EMIFB). The prefix “A” in front of a signal name indicates it is an EMIFA signal whereas a prefix “B” indicates
an EMIFB signal. In generic EMIF areas of discussion throughout this document, the prefix “A” and “B” may be omitted from the signal name.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 5

1.2 EMIF Registers
Control of the EMIF and the memory interfaces it supports is maintained through a set of
memory-mapped registers within the EMIF. EMIF registers should not be modified while the
register is in use. The memory-mapped registers are shown in .

Table 2. EMIF Memory Mapped Registers
Byte Address

EMIF and EMIFA EMIFB † Abbreviation Description
0x01800000 0x01A80000 GBLCTL EMIFx Global Control

0x01800004 0x01A80004 CE1CTL EMIFx CE1 Space Control

0x01800008 0x01A80008 CE0CTL EMIFx CE0 Space Control

0x0180000C 0x01A8000C Reserved

0x01800010 0x01A80010 CE2CTL EMIFx CE2 Space Control

0x01800014 0x01A80014 CE3CTL EMIFx CE3 Space Control

† EMIFA and EMIFB are available on C64x only.

1.2.1 CE Space Control Registers
The four CE space control registers correspond to the four CE spaces supported by the EMIF
(see Figure 2 and Figure 3). The MTYPE field identifies the memory type for the corresponding
CE space. All fields of the CE space control register are used for the flash interface. When
programming an external flash for a TMSC620x/C670x device, MType is set to a standard 32-bit
asynchronous interface, but this is not necessary for the TMS320C621x/C671x/C64x. When
reading from flash, the MType is set according to the width of the external interface. The
remaining fields control the strobe timing according to the specific flash selected.

31 28 27 22 21 20 19 16

WRITE SETUP WRITE STROBE WRITE HOLD READ SETUP

R/W, +1111 R/W, +111111 R/W,+11 R/W, +1111

15 14 13 8 7 6 4 3 2 1 0

Reserved READ STROBE Rsv MTYPE Reserved READ HOLD

R,+11 R/W,+111111 R,+0 R/W,+010 R,+0 R/W,+11

Figure 2. C6201/C6202/C6701 EMIF CE Space Control Register Diagram

31 28 27 22 21 20 19 16

WRITE SETUP WRITE STROBE WRITE HOLD READ SETUP

R/W,+1111 R/W,+111111 R/W,+11 R/W,+1111

15 14 13 8 7 4 3 2 1 0

TA READ STROBE MTYPE Write Hold MSB READ HOLD

R/W,+11 R/W,+111111 R/W,+010 R/W,+0 R/W,+011

Figure 3. C6211/C6711/C64x EMIF CE Space Control Register Diagram

C64x is a trademark of Texas Instruments.

SPRA568A

6 TMS320C6000 EMIF to External Flash Memory

Table 3. EMIF CE Space Control Registers Bitfield Description

Field Description

READ SETUP
WRITE SETUP

READ STROBE
WRITE STROBE

READ HOLD
WRITE HOLD

Setup width. Number of clock† cycles of setup for address (EA) and byte enables (BE(0–3)) before
read strobe (ARE) or write strobe (AWE) falling. On the first access to a CE space, this is also the
setup after CE falling.

Strobe width. The width of read strobe (ARE) and write strobe (AWE) in clock† cycles.

Hold width. Number of clock† cycles that address (EA) and byte strobes (BE(0–3)) are held after
read strobe (ARE) or write strobe (AWE) rising. These fields are extended by one bit on the
C6211/C6711/C64x.

MTYPE Memory type
C6201/C6202/C6701 only:
MTYPE = 000b: 8-bit-wide ROM (CE1 only)
MTYPE = 001b: 16-bit-wide ROM (CE1 only)
MTYPE = 010b: 32-bit-wide asynchronous interface
C6211/C6711/C64x only:
MTYPE = 0000b: 8-bit-wide asynchronous interface
MTYPE = 0001b: 16-bit-wide asynchronous interface
MTYPE = 0010b: 32-bit-wide asynchronous interface
MTYPE = 1100b: 64-bit-wide asynchronous interface§

TA‡ Turnaround time. Controls the number of ECLKOUT cycles between a read and a write or between
two reads.

† Clock = CLKOUT1 for C620x/C670x. Clock = ECLKOUT for C6211/C6711. Clock = ECLKOUT1 for C64x
‡ Applies to C6211/C6711/C64x only
§ Applies to C64x only

1.3 C620x/C670x EMIF ROM Modes

The C620x/C670x EMIF supports 8-, 16-, and 32-bit-wide ROM access modes, as selected by
the MTYPE field in the EMIF CE space control register. In reading data from these narrow-width
memory spaces, the EMIF packs multiple reads into one 32-bit value. This mode is primarily
intended for word access to 8-bit and 16-bit ROM devices, and operates as follows:

• Read operations always read 32 bits, regardless of the access size or the memory width. For
example, a byte read from an 8-bit ROM mode reads 4 bytes, and extracts the correct byte
needed by the DMA (direct memory access) or CPU.

• The address is shifted up appropriately to provide the correct address to the narrow memory.
The shift amount is 1 bit for a 16-bit ROM and 2 bits for an 8-bit ROM. Thus, the high
address bits are shifted out and accesses wrap around, if that CE space uses the entire EA
bus.

• The EMIF always reads the lower addresses first and packs these in the LSBytes, and packs
subsequent accesses into the higher-order bytes. Thus, the expected packing format in
ROM is always little-endian, regardless of the value of the LENDIAN bit.

• Write operations to a ROM space are the same as write accesses to a 32-bit asynchronous
CE space. No address shifting or byte packing is done.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 7

1.4 C6211/C6711/C64x EMIF x8/x16/x32/x64 Asynchronous Modes

The C6211/C6711 EMIF supports 8- and 16-bit bus widths and the C64x supports 8-, 16-, 32-,
and 64-bit bus widths for all memory types, including asynchronous MTypes. When reading data
from these narrow-width memory spaces, the EMIF packs multiple reads into one 32-bit value,
or 64-bit value for C64x EMIFA. This mode is used for both reading from, and writing to, external
memories.

• Read operations occur according to the size of the data requested. For example, a byte read
from an 8-bit ROM mode reads only 1 byte. A word read from an 8-bit ROM reads 4 bytes.

– The address is shifted up appropriately to provide the correct address to the narrow
memory. The shift amount is 1 bit for a 16-bit ROM and 2 bits for an 8 bit ROM. Thus, the
high address bits are shifted out and accesses wrap around, if that CE space uses the
entire EA bus.

– The EMIF always reads the low addresses first and packs these according to the
endianness of the system. The packing format can be little-endian or big-endian.

• Write operations occur according to the size of the data being written. For example, a byte
write to an 8-bit ROM writes only one 8-bit value to the correct external address. A word
write to an 8-bit asynchronous device writes four successive bytes.
– The address is shifted up appropriately to provide the correct address to the narrow

memory. For example, on a C6211 device with 32-bit bus widththe shift amount is 1 bit
for a 16-bit asynchronous memory and 2 bits for an 8-bit asynchronous memory. Thus,
the high address bits are shifted out and accesses wrap around, if that CE space uses
the entire EA bus.

– The EMIF always writes the low addresses first and packs these according to the
endianness of the system. The packing format can be little-endian or big-endian.

1.4.1 Byte Lane Alignment on the C6211/C6711 EMIF

The C6211/C6711 EMIF offers the capability to interface to 32-, 16-, and 8-bit-wide memories.
Depending on the endianness of the system, a different byte lane is used for all memory
interfaces. The alignment required is shown in Figure 4.

Note that BE3 always corresponds to ED[31:24], BE2 always corresponds to ED[23:16], BE1
always corresponds to ED[15:8], and BE0 always corresponds to ED[7:0], regardless of
endianness.

SPRA568A

8 TMS320C6000 EMIF to External Flash Memory

C6211/C6711

ED[31:24] ED[23:16] ED[15:8] ED[7:0]

32-Bit Device

16-Bit Device
Big Endian

16-Bit Device
Little Endian

8-Bit Device
Little Endian

8-Bit Device
Big Endian

Figure 4. Byte Lane Alignment vs. Endianness on the C6211/C6711

1.4.2 C64x Byte-Lane Alignment

The C64x EMIFA offers the capability to interface to 64-, 32-, 16-, and 8-bit-wide memories.
EMFIB supports interfaces to 16-bit and 8-bit memories. Figure 5 and Figure 6 show the byte
lanes used on the C64x for EMIFA and EMIFB.

Unlike the previous C6000 devices, the external memory on the C64x is always right-aligned to
the ED[7:0] side of the bus. The endianness mode determines whether byte lane 0 (ED[7:0]) is
accessed as byte address 0 (little endian) or as byte address N (big endian), where 2N is the
memory width in bytes.

Figure 5. EMIFA (64-Bit Bus) Byte Alignment by Endianness

ED[7:0] ED[15:8] ED[23:16] ED[31:24] ED[39:32] ED[47:40] ED[55:48] ED[63:56]
TMS320C64x EMIFA

64-Bit Device

32-Bit Device

16-Bit Device

8-Bit
Device

SPRA568A

TMS320C6000 EMIF to External Flash Memory 9

Figure 6. EMIFB (16-Bit Bus) Byte Alignment by Endianness

2 Flash Memory Interface
The asynchronous interface offers users configurable memory cycle types used to interface to a
variety of memory and peripheral types, including SRAM, EPROM, and flash, as well as FPGA
and ASIC designs. However, this section focuses on the interface between the EMIF and flash
memory, which is very similar to a ROM or EEPROM interface.

Table 3 shows that 8-, 16-, 32-, and 64-bit-wide (C64x EMIFA only) configurations are supported
by the EMIF via its asynchronous interface. Flash memory is commonly available on the market
in either 8-bit-wide devices or configurable 8-/16-bit-wide devices. The configurable devices
generally have 16 data I/O lines, but a mode select pin tells the device whether to operate in
8- or 16-bit mode.

If more depth is required than can be provided via an 8- or 16-bit-wide flash memory device,
then these devices can be used in parallel to create a x32/x64 bit interface. Due to the
asynchronous interface, some logic will be needed between the RY/BY and the EMIF ARDY
signal to verify that all the flash devices are ready. If glue is not used in the interface, then all the
D[x] bits from the Flash will need to be polled to verify that all the 8-or 16-bit ROMs are ready.

Table 4 lists the EMIF asynchronous interface pins and their mapping to pins on common flash
memory. Figure 7 shows an interface to 8-/16-bit wide standard flash utilizing the 16-bit mode. In
8-bit mode, D[15] operates as the least significant bit of the address, thus giving a 2n+2-byte
address space. Figure 8 shows an interface using an 8-bit-wide device.

Notice that the diagram shows no common clock interface between the C6000 and flash, as
indicated by the term asynchronous. The EMIF still uses the internal clock to coordinate the
timing of its signals, however, the flash responds to the signals at its inputs regardless of any
clock.

TMS320C64x EMIFB
ED[15:8] ED[7:0]

16-Bit Device

8-Bit Device

SPRA568A

10 TMS320C6000 EMIF to External Flash Memory

Table 4. EMIF Asynchronous Interface Pins

EMIF
Signal

Flash
Signal Function

AOE OE Output enable. Active-low during the entire period of a read access

AWE WE Write enabl. Active-low during a write transfer strobe period

ARE N/A Read enable. Active-low during a read transfer strobe period. Although not
connected to flash memory, it is still used logically to determine when the data is
read by the EMIF.

ARDY RY/BY Ready input used to insert wait states into the memory cycle. Hardware method
determines if flash memory is currently in program cycle or erase cycle. RY/BY
high indicates device is ready for next operation. Low indicates that device is busy
in either program or erase cycle (not on all devices).

N/A BYTE For 8-/16-bit devices, determines if the device will be used in byte mode or in
double-byte mode. BYTE-low selects byte mode. BYTE-high selects double-byte
mode (not on all devices).

Figure 7. EMIF 8-/16-Bit Flash Interface With ARDY Interface (16-Bit Mode)

VCC

CEn

External Memory
Interface (EMIF)

AOE
AWE

EAxx

ED[31:16]

ED[15:0]

BE[3:2]

BE[1:0]
ARE

ARDY

A[N:0]

D[15:0]

RY/BY

Flash
(2N–1 x 16/
2N+2 x 8)

BYTE

CS

OE

WE

SPRA568A

TMS320C6000 EMIF to External Flash Memory 11

Figure 8. EMIF 8-Bit Flash Interface Without ARDY Interface

2.1 Flash Functionality and Common Commands
Flash is a read-only memory device that has the capability of being reprogrammed in a target
system, providing the user with a cost-efficient means of maintaining a system that may require
code or data changes in the future. Typically, flash read cycles are compatible with the
asynchronous timing provided by the C6000. Writing data to flash is more complex, requiring a
sequence of writes to command registers in order to execute a command.

Table 5 lists a few of the common JEDEC compatible commands for x8/x16 devices. Devices
that are x8 only have a slightly different programming scheme, which is shown in Table 6. The
user should verify the programming codes for a particular device in the appropriate data sheet.

Table 5. Flash Commands for AMD’s AM29LV800B Devices†

 First Second Third Fourth Fifth Sixth

Command Cycles Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data

Read 1 RA RD

Reset 1 X F0h

Chip Erase
(8-bit)

6 AAA AA 555 55 AAA 80 AAA AA 555 55 AAA 10

Chip Erase
(16-bit)

6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10

† Although this programming format is common to many x8/x16 devices, the programming codes for a particular device should be verified before
using.

NOTES: 1. RA = read address

• RD = read data

• PA = program address

• PD = program data

ARDY

AOE
AWE

EAxx

ED[31:8]

ED[7:0]

BE[3:2]

BE[1:0]
ARE

External Memory
Interface (EMIF)

CEn

OE
WE
A[N:0]

D[15:0]

RY/BY

Flash
(2N+1 x 8)

CS

SPRA568A

12 TMS320C6000 EMIF to External Flash Memory

Table 5. Flash Commands for AMD’s AM29LV800B Devices† (Continued)

First Second Third Fourth Fifth Sixth

Command Cycles Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data

Program (8-bit) 4 AAA AA 555 55 AAA A0 PA PD

Program (16-bit) 4 555 AA 2AA 55 555 A0 PA PD

† Although this programming format is common to many x8/x16 devices, the programming codes for a particular device should be verified before
using.

NOTES: 1. RA = read address
2. RD = read data
3. PA = program address
4. PD = program data

Table 6. Flash Commands for AMD’s AM29LV040B Devices†

First Second Third Fourth Fifth Sixth

Command Cycles Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data

Read 1 RA RD

Reset 1 X F0h

Chip erase
(8 bit)

6 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 5555 10

Program
(8 bit)

4 5555 AA 2AAA 55 5555 A0 PA PD

† Although this programming format is common to many x8/x16 devices, the programming codes for a particular device should be verified before
using.

NOTES: 1. RA = read address
2. RD = read data
3. PA = program address
4. PD = program data

2.1.1 Read/Reset Command

Issuing the reset command to the flash memory activates the read mode. The device remains in
this mode until another valid command sequence is input in the command register. The device
enters this mode by default on hardware reset of if an invalid command sequence is entered. In
addition, when any chip or erase operation finishes, the device returns to read mode.

2.1.2 Chip Erase Command

Chip erase is a six-bus-cycle command sequence that must be executed if reprogramming a
device. This command physically erases the entire address space. Before data can be
programmed to the device, the addresses to be programmed must be erased, either by erasing
the whole chip or the sector in which the addresses reside. After the last rising edge of WE, the
chip erase operation begins, and any additional commands written to the device are ignored
until the erase operation is complete.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 13

2.1.3 Program Command

The program command writes new data to the device. For each byte, double byte, or word to be
programmed, first a three-write-cycle sequence is issued, followed by the address and data to
actually be written to the device. The rising edge of WE starts the program operation. Additional
commands written to the device during the program operation are ignored until the program
operation is complete.

2.1.4 Other Commands

Although the commands listed above are common to most devices, some devices may have
their own version of these commands, which may or may not be JEDEC-compatible. Other
common commands include a sector erase command that allows the user to erase only a single
sector of the flash memory. This command would take less time than erasing the whole device,
and is useful if only a small amount of data or code is going to be changed. Another common
feature is known as unlock bypass, which allows 2-cycle write commands rather than the
standard 4-cycle writes.

Other less common features include erase suspend/erase resume, which allows the erase
command to be paused in a given sector so that reads or writes to another sector can be
performed. With this command, the sector being erased cannot be read or written to until the
erase operation is complete.

2.2 Device Status

The status of the device during a program operation or chip erase operation can be determined
either by software or by both hardware and software, depending on the functionality of the
specific flash memory.

Software monitoring can be done by reading the state of the D[7] pin, which is called the data
polling pin. The status of this bit during a program operation is the complement of the bit written
to this pin during the program command, until the program operation completes. When the
program operation completes, a data read returns the correct data on all pins, including D[7].
During an erase operation, the data read on this pin is a zero. When the erase operation is
complete, a read returns a one on D[7]. Depending on the functionality of the flash, additional
pins are used in combination to define the function currently in operation.

Figure 9 shows a waveform illustrating a program command sequence, followed by data polling
to determine when the program operation completes. This diagram assumes that either the
RY/BY signal is NOT connected to the ARDY pin of the EMIF, or the flash device does NOT
support RY/BY functionality. The RY/BY signal is shown to illustrate the beginning and end of
the program operation. As seen, before the program operation is completed, the RY/BY signal is
low, and a read from the address just programmed returns the complement of the programmed
data at bit 7. When the program operation completes, a read returns valid data, indicating that
the device is ready for the next operation.

If the flash cannot finish a program or erase operation for some reason, the D[5] pin can be used
to detect a time-out condition. A value of 1 on D[5], while D[7] is still not equal to data, indicates
a time out. To execute any more commands, a reset command must be issued to the flash.

SPRA568A

14 TMS320C6000 EMIF to External Flash Memory

CE

EA [21:2]

ED [31:0]

AOE

ARE

AWE

ARDY

Program Command Using Data Polling

Figure 9. Program Command Without ARDY Interface – Software Monitoring

Most flash memory devices have this data polling functionality, whether or not they include the
RY/BY pin. However, data polling is not possible when the RY/BY pin is connected to the ARDY
pin of the C6000 because, if the flash device is busy (indicated by a low level on the RY/BY pin
and the ARDY pin of the C6000), the C6000 cannot complete a read to the flash address space
until the flash memory completes its current operation and RY/BY is sent high.

If the device being used has the RY/BY function, no software intervention is necessary. A low
level on this pin informs the EMIF to extend any future read or write cycles as long as necessary
until the state of the pin changes, informing the EMIF that the flash is ready.

Figure 10 shows a waveform illustrating a program command sequence, followed by a read to
the same address location. This figure assumes that the RY/BY signal is connected to the ARDY
input of the C6000. The read cycle is extended as long as there is a low level on the ARDY pin.
Although this example uses a read cycle to illustrate the ARDY operation, if the next cycle after
the program command were a write, the same cycle extension would occur. Therefore, the
C6000 can begin writing the next program sequence at any time without any software control
because the EMIF prevents any additional reads or writes until the ARDY signal goes high.

Although the RY/BY signal provides a simple interface to the EMIF, there is a limitation if the
operation is unable to complete. If software polling were used without the ARDY interface, this
condition could be detected by monitoring the D[5] pin. This condition cannot be detected with
the ARDY interface because, if the operation cannot complete, the ARDY input will be low and a
read cannot complete to the flash. This can be worked around by forcing a hardware reset, if the
ARDY signal is low for a specified number of cycles.

555h PA 555h PA PA PA

A0h PD A0h PD !D7 PD

SPRA568A

TMS320C6000 EMIF to External Flash Memory 15

CE

EA [21:2]

ED [31:0]

AOE

ARE

555h PA 555h PA PA

A0h PD A0h PD PD

AWE

ARDY

Program Command Using RY/BY

Figure 10. Program Command With ARDY Interface – Hardware Monitoring

2.3 Byte Addressing and Shifting on the EA Bus

When the CPU or DMA accesses the EMIF bus, the external address is shifted according to the
bus width of the external device and the size of the access. For most memory interfaces this is
transparent to the user, since the EMIF automatically handles alignment and packing issues.
The same is true for reads from a Flash memory. During writes to a Flash memory, however, the
address presented to the external Flash must be carefully controlled, since the address bus is
used to control the type of command issued to the flash.

During writes to a flash memory device, the EMIF must make sure that the address bits sent
across the bus to the flash device will be correctly received on the correct pins. With the C6x0x
devices, only 32-bit writes are supported so the address shifting is always consistent. The C6x1x
and C64x devices allow 8-bit, 16-bit, 32-bit, and 64-bit-wide write accesses, depending on the
device.

For the C621x/C671x and C64x devices, no problems occur for an 8-bit interface, since the
desired opcode can be used directly. In this mode, the logical address is sent out directly on the
external address bus, EA[LSB+20:LSB] ,as can be seen in Table 7. A0 is always driven out on
the LSB of the external address. For all the other bus widths, the logical address must be shifted
appropriately to force the opcode to be presented correctly on the external address pins. A
16-bit interface requires the opcode to be left shifted one position so that OPCODE[0] = logical
address A1 = EA[LSB]. Table 7 shows the shifting that is required by the logical byte addresses
for the various widths available on the C6000 devices.

For example, if a user wished to write the value of 0x555 onto the flash, the width of the
interface must always be considered. The value will always be stored into a byte address, so the
number of byte-enable bits will increase along with the width of the interface. For an 8-bit
interface, the value’s least significant bit, A0, will match with the first address bit on the EA line.
If the interface is changed to 16-bits, then from Table 7 it can be seen that A1 is the first logical
bit to be aligned with the EA line, because A0 is viewed as the byte enable bit. Since the entire
0x555 value is required, one left shift must be manually added in order for the logical byte
address to include the least significant bit of the value. The same procedure is required for a 32-
and 64-bit interface, with a left shift of 2 and 3 required, respectively.

SPRA568A

16 TMS320C6000 EMIF to External Flash Memory

This example is modeled below with a few lines of simple code. The code represents the value
0x555 transferred from the EMIF to a register on the flash memory. As stated above, the value
must be shifted N times depending on the width of the interface.

MVKL 0x555, A5
MVKH 0X555, A5
SHL A5, N, A5
STW val_reg, *A5

Table 7. Byte Address to EA Mapping for Asynchronous Memory Widths

EA Line

C620x/C621x/ EA
C670x/C671x 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

 EA
C64x EMIFA 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

 EA
C64x EMIFB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Mtype Width Logical Byte Address

x64 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3

x32 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2

x16 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1

x8 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Table 8 shows the values of the opcode, and then shows its logical byte address. For all the
interfaces other than the 8-bit-wide interface, a shift is required, as can be seen in the code
segment above. This shift is required for the value of 0x555 to be correctly represented on the
external address pins.

Table 8. Example of Write to Flash Memory and Address Shifting

 Interface

Width
Desired
Opcode

N Value

Logical
Address†

External Address

Assembly
Command‡

C620x/C670x x32 0x555 2 0x1554 EA[21:2] = 0x555 STW

C621x/C671x x8 0x555 0 0x555 EA[21:2] = 0x555 STB
 x16 0x555 1 0xAAA EA[21:2] = 0x555 STH
 X32 0x555 2 0x1554 EA[21:2] = 0x555 STB

C64x EMIFA x8 0x555 0 A0x555 EA[22:3] = 0x555 STB
 x16 0x555 1 0xAAA EA[22:3] = 0x555 STH
 X32 0x555 2 0x1554 EA[22:3] = 0x555 STB
 x64 0x555 3 0x2AA8 EA[22:3] = 0x555 STDW

† Logical Address = Opcode left shifted by N
‡ This command will replace the “STW” command in the code for the example.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 17

Table 8. Example of Write to Flash Memory and Address Shifting (Continued)

Interface
Width

Desired
Opcode

N Value

Logical
Address†

External Address

Assembly
Command‡

C64x EMIFB x8 0x555 0 0x555 EA[20:1] = 0x555 STB

x16 0x555 1 0xAAA EA[20:1] = 0x555 STH

† Logical Address = Opcode left shifted by N
‡ This command will replace the “STW” command in the code for the example.

2.4 Programmable ASRAM Parameters
The EMIF allows a high degree of programmability for shaping asynchronous accesses. The
programmable parameters that allow this are:
• Read setup/write setup: The time between the beginning of a memory cycle (CE low,

address valid) and the activation of the read or write strobe
• Read strobe/write strobe: The time between the activation and deactivation of the read

(ARE) or write strobe (AWE)
• Read hold/write hold: The time between the deactivation of the read or write strobe and the end

of the cycle (which may be either an address change or the deactivation of the AOE signal)
• Turnaround (C621x/C671x/C64x only): The time between the end of a read access and the

beginning of a write access

These parameters are programmable in terms of clock cycles via fields in the EMIF CE space
control registers. For the C620x/C670x, these fields are programmable in terms of CLKOUT1
cycles. For the C621x/C671x/C64x, these fields are programmable in terms of ECLKOUT (or
ECLKOUT1) cycles. Separate setup, strobe, and hold parameters are available for read and
write accesses. The SETUP, HOLD, and STROBE fields represent actual cycle counts, in
contrast to SDRAM parameters, which are the cycle counts – 1.

2.5 Margin Considerations

The flash interface is typically a low-performance interface compared to synchronous memory
interfaces, high-speed asynchronous memory interfaces, and high-speed FIFO interfaces. For
this reason, this application report pays little attention to minimizing the amount of margin
required when programming the asynchronous timing parameters. The approach used requires
approximately 10 ns of margin on all parameters, which is not significant for a 100-ns read or
write cycle. See Table 9 through Table 13. For additional details on minimizing the amount of
margin, see the TMS320C6000 EMIF to External Asynchronous SRAM Interface (SPRA542).

Table 9. Recommended Timing Margin

Timing Parameter Recommended Margin

Output setup ~10 ns

Output hold ~10 ns

Input setup ~10 ns

Input hold ~10 ns

SPRA568A

18 TMS320C6000 EMIF to External Flash Memory

Table 10. EMIF – Input Timing Requirements (Input Data)

Timing
Parameter Definition

tisu Data setup time, read D before CLKOUT1 high

th Data hold time, read D after CLKOUT1 high

Table 11. EMIF – Output Timing Characteristics (Data, Address, Control)

Timing
Parameter Definition

td Output delay time, CLKOUT1 high to output signal valid

Table 12. ASRAM – Input Timing Requirement

Timing
Parameter Definition

txw(m) Time from control/data signals active to AWE inactive

twp(m) Write pulse width

tih(m), twr(m) Maximum of either write recovery time or data hold time

trc(m) Length of the read cycle

twc(m) Length of the write cycle

Table 13. ASRAM – Output Timing Characteristics

Timing
Parameter Definition

tacc(m) Access time, from EA, BE, AOE, CE active to ED valid

toh(m) Output hold time

2.6 Asynchronous Reads

Figure 11 illustrates an asynchronous read cycle with a setup/strobe/hold timing of 1/2/1. An
asynchronous read proceeds as follows:
• At the beginning of the setup period

– CE becomes active low.

– AOE becomes active low.
– BE[3:0] becomes valid.
– EA becomes valid.
– C620x/C670x: For the first access, setup has a minimum value of 2; after the first

access, setup has a minimum value of 1 (see Figure 11).
– C6211/C6711/C64x: Setup is always a minimum of 1 (see Figure 12).

SPRA568A

TMS320C6000 EMIF to External Flash Memory 19

• At the beginning of a strobe period

– ARE becomes active low.

• At the beginning of a hold period

– ARE becomes inactive high.

– Data is sampled on the clock rising edge concurrent with the beginning of the hold period
(end of the strobe period) just prior to the ARE low-to-high transition.

• At the end of the hold period

– AOE becomes inactive as long as another read access to the same CE space is not
scheduled for the next cycle.

– C620x/C670x: After the last access (burst transfer or single access), CE stays active for
seven minus the value of read-hold cycles. For example, if READ HOLD = 1, CE stays
active for six more cycles. This does not affect performance, but merely reflects the EMIF
overhead (see Figure 11).

– C6211/C6711/C64x: CE goes inactive at the end of the hold period (see Figure 12).

CLKOUT1

CEx

BE[3:0]

EA [21:2]

ED [31:0]

AOE

ARE

AWE

ARDY

Figure 11. C620x/C670x Asynchronous Read Timing Example (1/2/1)

Setup Strobe

 2 2

Hold Setup Strobe Hold CE Read Hold

 1 1 2 1 6
C6x Samples Data C6x Samples Data

BE1 BE2

trc(m)
td td

A1 A2

th
tacc(m)

D1
tsu

D2
toh(m)

td td

SPRA568A

20 TMS320C6000 EMIF to External Flash Memory

ECLKOUT

CEx

BE

EA

ED

AOE

ARE

AWE

ARDY

Figure 12. C6211/C6711/C64x Asynchronous Read Timing Example (1/2/1)

2.6.1 Setting Read Parameters for a Specific Flash Memory

Notice in Figure 11 and Figure 12 that the actual timing used by the C6000 to determine when
read data is valid is based on the ARE signal. Data is actually read on the rising clock edge
corresponding to the cycle prior to which ARE goes high, which is the end of the STROBE
period. However, shows that ARE is not connected to asynchronous SRAM. This is pointed out
to stress the significance of the SETUP, STROBE, and HOLD times for the C6000 and, to
compare them to the significant timing parameters of actual ASRAM.

Flash is not synchronized to any clock; however, it does have a maximum access time (tacc) that
relates when the output data is valid after receiving the required inputs. Thus, the data should be
sampled at a time tacc plus tisu after the inputs are valid, which, as mentioned, should
correspond to the end of the strobe period.

Therefore, when defining the parameters for the C6000 for SETUP, STROBE, and HOLD, the
following constraints apply:

• SETUP + STROBE ≥ (tacc(m) + tsu + tdmax)/tcyc

• SETUP + STROBE + HOLD ≥ (trc(m))/tcyc

• HOLD ≥ (th – tdmin – toh(m))/tcyc

Normally, SETUP can be set to 1 cycle, then STROBE can be solved for using constraint (1).
HOLD can then be solved for using constraint (2). Of course, the smallest value possible should
be used for all three parameters to satisfy the constraints while giving the necessary timing
margin.

Setup Strobe Hold Setup Strobe Hold

1 2 1 1 2 1
C6x Samples Data C6x Samples Data

BE1 BE2

trc(m)

td
A1 A2

toh(m)
tacc(m) tisu th

D1 D2

td td

td

SPRA568A

TMS320C6000 EMIF to External Flash Memory 21

2.7 Asynchronous Writes

Figure 13 illustrates back-to-back asynchronous write with a setup/strobe/hold of 1/1/1. An
asynchronous write proceeds as follows.

• At the beginning of the setup period

– CE becomes active-low.

– BE[3:0] becomes valid.

– EA becomes valid.
– ED becomes valid.

– C620x/C670x: For the first access, setup has a minimum value of 2; after the first access
setup has a minimum value of 1 (see Figure 13).

– C6211/C6711/C64x: Setup is always a minimum of 1 (see Figure 14).
• At the beginning of a strobe period

– AWE becomes active-low.
• At the beginning of a hold period

– AWE becomes inactive-high.

• At the end of the hold period

– ED goes into the high-impedance state only if another write to the same CE space is not
scheduled for the next cycle.

– C620x/C670x: If no write accesses are scheduled for the next cycle and write HOLD is
set to 1 or greater, CE will stay active for three cycles after the programmed HOLD
period. If write HOLD is set to 0, CE will stay active for four more cycles. This does not
affect performance, but merely reflects the EMIF overhead (see Figure 13).

– C6211/C6711/C64x: CE goes inactive at the end of the hold period (see Figure 14).

SPRA568A

22 TMS320C6000 EMIF to External Flash Memory

CLKOUT1

CEx

BE[3:0]

EA [21:2]

ED [31:0]

AOE

ARE

AWE

ARDY

Figure 13. C620x/C670x Asynchronous Write Timing Example (1/1/1)

ECLKOUT

CEx

BE[3:0]

EA [21:2]

ED [31:0]

AOE

ARE

AWE

ARDY

Figure 14. C6211/C6711/C64x Asynchronous Write Timing Example (1/1/1)

Setup Strobe

 2 1

Hold Setup Strobe HoldCE Write Hold

 1 1 1 1 3

BE1 BE2

twc(m)

twr(m)
A1 A2

td
td tih(m)

D1 D2

td td
txw(m)

twp(m)

Setup Strobe Hold Setup Strobe Hold

 1 1 1 1 1 1

BE1 BE2

twc(m)
twr(m)

A1 A2

td
td tiih(m)

D1 D2

td td
txw(m)

twp(m)

SPRA568A

TMS320C6000 EMIF to External Flash Memory 23

2.7.1 Setting Write Parameters for a Specific Asynchronous SRAM

For an ASRAM write, the SETUP, STROBE, and HOLD parameters should be set according to
the following constraints:

• STROBE ≥ (twp(m))/tcyc.
• SETUP + STROBE ≥ (txw(m)) /tcyc

• HOLD ≥ (max(tih(m), twr(m)))/tcyc

• SETUP + STROBE + HOLD ≥ (twc(m))/tcyc

2.8 Read-to-Write Timing for C6211/C6711/C64x

The C6211/C6711/C64x EMIF offers an additional parameter, TA, that defines the turnaround
time between read and write cycles (see Figure 15). This parameter protects against the
situation in which the output turn-off time of the memory is longer than the time it takes to start
the next write cycle. If this were the case, the C6211/C6711/C64x could drive data at the same
time as the memory, causing contention on the bus.

The fact that the C620x/C670x asynchronous interface does not have this feature does not
cause problems because the read cycle of these devices append a CE hold period that protects
against bus contention.

ECLKOUT

CEx

BE[3:0]

EA [21:2]

ED [31:0]

AOE

ARE

AWE

ARDY

Figure 15. Turnaround Time on C6211/C6711/C64x

HOLD TA = 2 SETUP

td td

td td

td

tohz(m) td

td

SPRA568A

24 TMS320C6000 EMIF to External Flash Memory

2.8.1 Setting TA Parameters for a Specific Asynchronous SRAM

The turnaround time on the C6211/C6711/C64x should be set as follows:

TA >= (tohz(m))/tcyc

2.8.2 MTYPE Setting for the C620x/C670x

The MTYPE setting can specify different interfaces to asynchronous memory: 8-bit ROM, 16-bit
ROM, or 32-bit asynchronous. How the flash is used dictates which of these modes should be
selected.

During normal read operation, the MTYPE field should be set to either 8-bit ROM or 16-bit ROM,
depending on the specific flash used. When either ROM mode is selected, the EMIF
automatically shifts the address appropriately so that the correct data is accessed.

During flash programming, it is simpler to use the 32-bit interface and treat the FLASH as if it
were 32 bits wide.

2.8.3 MTYPE Setting for the C6211/C6711/C64x

The MType setting on the C6211/C6711/C64x can select between the 8-, 16-, 32-, or 64-bit
(C64x only) asynchronous interface, which is used for both read and write access. For read
access, the appropriate bus width should be chosen in the MType field to match the width of the
external bus. In this way, the user can do 8-, 16-, and 32-bit accesses and the EMIF takes care
of the necessary byte packing.

If an 8- or 16-bit interface is used, 32-bit or 64-bit accesses should not be done because a
specific sequence should be used to program the flash and the external address sequence will
change, depending on the byte re-ordering necessary. If a 32-bit or 64-bit interface is selected
with the MType field, the address can be shifted internally to ensure that the proper sequence is
used.

During flash programming, the Mtype field should be programmed according to the width of the
memory for reads and writes.

3 Full Example for Programming AMD’s AM29LV800-90 (ARDY Interface)

This section walks through the configuration steps required to implement AMD’s
AM29LV800-90, which is an 8M-bit part organized as 1M x 8 bit or 512K x 16 bit, depending on
the state of the mode-select pin.

For this implementation, the following assumptions are made:

• Flash is used in address space CE1, configured as a 16-bit-wide ROM.

• Clock speed is 200 MHz; therefore tperiod is 5 ns.

• The interface utilizes the RY/BY function of the flash memory; therefore, no software polling
is needed.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 25

3.1 Hardware Interface

The hardware interface with the AM29LV800 flash memory is identical to that shown in with the
CE1 signal used. As shown in , the CE1 output is logically ORed with the RY/BY signal from the
flash memory before being tied to the ARDY input of the EMIF. This is done to prevent this
signal from interfering with access to any other asynchronous memory in other CE spaces.

For example, if a program sequence is written to the flash, the only way the EMIF can recognize
that the RY/BY signal is low is with an access to CE1. This allows a low signal to pass on to
ARDY and extends the cycle until the flash is finished with the program operation. If after the
program sequence CE2 is accessed instead, the input to ARDY will be high and not inhibit
access to CE2 because CE1 is still high.

The reason CE1 is selected for the memory space in this example is because of the boot
processes supported by the C6000. The C6000 can be set up to transfer data from CE1 to
address 0 with the DMA immediately after reset, which is a very good use for flash memory. If
flash is used at CE1, semi-permanent boot code can be stored there. The state of the Bootmode
pins at reset lets the processor know which type of memory is located at CE1.

3.2 Register Configuration

Table 14 through Table 17 summarize the timing characteristics of TI’s C6201B and AMD’s
AM29LV800-90, which are used to calculate the values for the CE0 space configuration register.
This data was taken from TMS320C6201, TMS320C6201B FDigital Signal Processors
(SPRS051) and the AM29LV800 data sheet.

Table 14. C6201B EMIF – Input Requirements

Timing
Parameter

Definition

Min

Max

Unit

tsu Setup time, read ED before CLKOUT1 high 4 ns

th Data hold time, read D after CLKOUT1 high 0.8 ns

tsu Setup time, ARDY valid before CLKOUT1 high 3 ns

th Data hold time, ARDY valid after CLKOUT1 high 1.8 ns

Table 15. C6201B EMIF – Output Timing Characteristics

Timing
Parameter

Definition

Min

Max

Unit

td Output delay time, CLKOUT1 high to output signal valid –0.2 4 ns

SPRA568A

26 TMS320C6000 EMIF to External Flash Memory

Table 16. ASRAM Input Requirements From EMIF for AM29LV800-90

Timing
Parameter

Definition

Min

Max

Unit

txw(m) Time from control/data signals active to AWE inactive 45 ns

twp(m) Write pulse width 35 ns

tih(m), twr(m) Maximum of either write recovery time or data hold time 10 ns

trc(m) Length of the read cycle 90 ns

twc(m) Length of the write cycle 90 ns

Table 17. ASRAM – Output Timing Characteristics for AM29LV800-90

Timing
Parameter

Definition

Min

Max

Unit

tacc(m)

toh(m)

Access time from EA, BE, AOE, CE active to ED valid

Output hold time

0

90 ns

3.2.1 Read Calculations

• SETUP = 1, based on the suggestion stated in section 2.6.1, Setting Read Parameters for a
Specific Flash Memory.

• SETUP + STROBE ≥ (tacc(m) + tsu + tdmax)tcyc

Therefore,
STROBE ≥ (tacc(m) + tsu + tdmax)tcyc – SETUP

≥ (90 ns + 4 ns + 4 ns) 5 ns –1
≥ 19.6 cycles – 1 cycle = 18.6 cycles

STROBE = 21 cycles; tmargin = 12 ns

• SETUP + STROBE + HOLD ≥ (trc(m))tcyc
Therefore,

HOLD ≥ (trc(m))tcyc − SETUP – STROBE
≥ (90 ns)5 ns – 1 – 21 = –4 cycles

HOLD = 0 cycles because it cannot be negative; tmargin = 20 ns

• HOLD ≥ (th – tdmin – toh(m))tcyc

Therefore,
HOLD ≥ (th – tdmin – toh(m))tcyc

≥ (0.8 ns – (–0.2 ns) – 0 ns)5 ns = 0.2 cycles

HOLD = 3 cycles; tmargin = 14 ns

The margin recommended is met with the settings specified in bold.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 27

3.2.2 Write Calculations
• STROBE ≥ (twp(m))/tcyc

≥ (35 ns)/5 ns = 7 cycles
STROBE = 9 cycles; tmargin = 10 ns

• SETUP + STROBE ≥ (txw(m))/tcyc
Therefore,

SETUP ≥ (txw(m))/tcyc – STROBE
= (45 ns)/5 ns – 9 cycles
= 0.0 cycles

SETUP = 2 cycle; tmargin = 10 ns

• HOLD ≥ (max(tih(m), twr(m)))/tcyc
≥ (10 ns)/5 ns = 2 cycles

HOLD = 3 cycles; tmargin = 5 ns
• SETUP + HOLD + STROBE ≥ twc

SETUP + STROBE + HOLD = 15 cycles = 75 ns. This requirement not is satisfied.
If STROBE = 14 cycles, the sum of the three parameters is 20 cycles or 100 ns, which is
greater than 90 ns; tmargin = 10 ns.

3.2.2.1 MType Setting

Because Figure 16 illustrates flash programming with the C6201B, the MTYPE field is set for the
32-bit asynchronous interface. This allows us to treat the flash as a 32-bit-wide device and to
increment the program destination pointer by 4 bytes so that no address shifting is necessary to
program the proper address. The control addresses still must be shifted so that the proper
address shows up on the address lines. This is illustrated in the sample code in Appendix A.

Using the above calculations, the CE space control register can now be properly configured.
Figure 16 shows the CE1 space control register with the properly assigned values for each field.
The value to be used is 0x82811220.

31 28 27 22 21 20 19 16

WRITE SETUP WRITE STROBE WRITE HOLD READ SETUP

0010 001110 11 0001

15 14 13 8 7 6 4 3 2 1 0

rsv READ STROBE Rsv MTYPE Reserved READ HOLD

11 010101 0 010 00 11

Figure 16. EMIF CE1 Space Control Register Diagram for AM29LV800-90

SPRA568A

28 TMS320C6000 EMIF to External Flash Memory

3.3 Software Control

Software polling is not necessary because this interface utilizes the RY/BY signal as an input to
the EMIF via the ARDY input, and any read or write to the flash is automatically extended until
the flash is ready to respond. Because software polling is not necessary, the software algorithm
is simple.

3.3.1 Read Operation

For this flash device, the device is in read mode automatically on hardware reset; thus, no
special steps must be taken if the device is to be used only for reading code or data. At the first
convenient time, the EMIF registers should be set as described in section 3.2.

3.3.2 Write Operation

The write operation is slightly more involved but is still simple because software polling is not
required. Figure 17 contains flowcharts of the two operations required to write new data to the
flash memory. This flowchart and code example assumes that the source data has been written
to CE2 via the HPI or by other means not discussed in this document. This example illustrates
erasing, then programming the flash memory. For the source code used, refer to Appendix A.

Yes

Yes

Figure 17. Erase Chip and Program Command Flow Charts

Last Address?

Erase Flash

Write Erase Chip
Cmd Sequence

Program Flash

Write Program
Cmd Sequence

Programming

Complete

Erase Complete

Next Address No

SPRA568A

TMS320C6000 EMIF to External Flash Memory 29

4 Full Example for Programming AMD’s AM29LV040-70
This section walks through the configuration steps required to implement TI’s AM29LV040-70,
which is a 4M-bit part organized as 512K x 8 bit, with the C6201B. See Table 18 through
Table 21.

This implementation makes the following assumptions:

• Flash is used in address space CE1, configured as a 16-bit-wide ROM.

• Clock speed is 200 MHz; therefore, tperiod is 5 ns.
• The interface does not utilize the RY/BY function of the flash memory; therefore, software

polling is required.

4.1 Hardware Interface

The hardware interface with the AM29LV040 flash memory is identical to that shown in Figure 8,
with the CE1 signal used.

The reason CE1 is selected for the memory space in this example is the boot processes
supported by the C6201B. The C6201B can be set up to transfer data from CE1 to address 0
with the DMA immediately after reset, which is a very good use for flash memory. If flash is used
at CE1, semi-permanent boot code can be stored there. The state of the Bootmode pins at reset
lets the processor know which type of memory is located at CE1.

Table 18. C6201B EMIF – Input Requirements

Timing
Parameter

Definition

Min

Max

Unit

tsu Setup time, read ED before CLKOUT1 high 4 ns

th Data hold time, read D after CLKOUT1 high 0.8 ns

tsu Setup time, ARDY valid before CLKOUT1 high 3 ns

th Data hold time, ARDY valid after CLKOUT1 high 1.8 ns

Table 19. C6201B EMIF – Output Timing Characteristics

Timing
Parameter

Definition

Min

Max

Unit

td Output delay time, CLKOUT1 high to output signal valid –0.2 4 ns

SPRA568A

30 TMS320C6000 EMIF to External Flash Memory

Table 20. Input Requirements for AM29LV040-70

Timing
Parameter

Definition

Min

Max

Unit

txw(m) Time from control/data signals active to AWE inactive 45 ns

twp(m) Write pulse width 35 ns

tih(m), twr(m) Maximum of either write recovery time or data hold time 10 ns

trc(m) Length of the read cycle 70 ns

twc(m) Length of the write cycle 70 ns

Table 21. Output Timing Characteristics for AM29LV040-70

Timing
Parameter

Definition

Min

Max

Unit

tacc(m)

toh(m)

Access time from EA, BE, AOE, CE active to ED valid

Output hold time

0

70 ns

4.1.1 Read Calculations

• SETUP = 1, based on the suggestion stated in the section 2.6.1, Setting Read Parameters
for a Specific Flash Memory.

• SETUP + STROBE ≥ (tacc(m) + tsu + tdmax)/tcyc
Therefore,
STROBE ≥ (tacc(m) + tsu + tdmax)/tcyc – SETUP

≥ (70 ns + 4 ns + 4 ns)/ 5 ns –1
≥ 15.6 cycles – 1 cycle = 14.6 cycles

STROBE = 17 cycles; tmargin = 12 ns

• SETUP + STROBE + HOLD ≥ (trc(m))/tcyc
Therefore,

HOLD ≥ (trc(m))/tcyc − SETUP – STROBE
≥ (70 ns)/5 ns – 1 – 17 = –4 cycles

HOLD = 0 cycles because it cannot be negative; tmargin = 20 ns

• HOLD ≥ (th – tdmin – toh(m))/tcyc

Therefore,
HOLD ≥ (th – tdmin – toh(m))/tcyc

≥ (0.8 ns – (–0.2 ns) – 0 ns)/ 5 ns = 0.2 cycles
HOLD = 3 cycles; tmargin = 14 ns

With the settings specified in bold, the margin recommended is met.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 31

4.1.2 Write Calculations
• STROBE ≥ (twp(m))/tcyc

≥ (35 ns)/ 5 ns = 7 cycles
STROBE = 9 cycles; tmargin = 10 ns

• SETUP + STROBE ≥ (txw(m))/tcyc
Therefore,

SETUP ≥ (txw(m))/tcyc – STROBE
= (45 ns)/5 ns – 9 cycles
= 0.0 cycles

SETUP = 2 cycle; tmargin = 10 ns

• HOLD ≥ (max(tih(m), twr(m)))/tcyc
≥ (10 ns)/5 ns = 2 cycles

HOLD = 3 cycles; tmargin = 5 ns
• SETUP + HOLD + STROBE ≥ twc

SETUP + STROBE + HOLD = 14 cycles = 70 ns. This requirement does not provide any
margin.
If STROBE = 11 cycles, the sum of the three parameters is 16 cycles or 80 ns, which is
greater than 70 ns. tmargin = 10 ns.

4.1.2.1 MType Setting

Because Figure 18 illustrates flash programming, the MTYPE field is set for a 32-bit
asynchronous interface. This allows us to treat the flash as a 32-bit-wide device and to
increment the program destination pointer by 4 bytes so that no address shifting must be done
to program the proper address. The control addresses must still be shifted so that the proper
address shows up on the address lines. This is illustrated in the sample code in Appendix B.

Using the above calculations, the CE space control register can now be properly configured.
See Figure 18.

31 28 27 22 21 20 19 16

WRITE SETUP WRITE STROBE WRITE HOLD READ SETUP

0010 001011 11 0001

15 14 13 8 7 6 4 3 2 1 0

rsv READ STROBE Rsv MTYPE Reserved READ HOLD

11 010001 0 010 00 11

Figure 18. EMIF CE1 Space Control Register Diagram for AM29LV040-70

SPRA568A

32 TMS320C6000 EMIF to External Flash Memory

Pass?

Yes No

Last Address?

Yes

Programming

Complete
Programming

Failed

Poll Device Status

4.2 Software Control

Software polling is necessary because this interface does not utilize the RY/BY signal as an
input to the EMIF via the ARDY input, and the EMIF does not automatically wait until the
embedded algorithm is complete.

4.2.1 Read Operation

On hardware reset, this flash device is automatically in read mode; thus, no special steps must
be taken if the device is used only to read code or data. At the first convenient time, the EMIF
registers should be set as described in section 3.2.

4.2.2 Write Operation

The write operation is slightly more involved. Software polling must be used to detect completion
of the embedded program or erase algorithm. Figure 19 contains flow charts of the two
operations required to write new data to the flash memory – erase and program. In each of
these algorithms, device polling must be done using software. The polling algorithm is shown in
Figure 20. This flow chart and code example assumes that the source data is written to CE2 via
the HPI or other means not discussed in this document. This example illustrates erasing, then
programming the flash memory. For source code, see Appendix B.

Next Address No

Figure 19. Erase Chip and Program Command Flow Charts

Program Flash

Write Program
Cmd Sequence

Pass? No

Yes

Erase Complete Erase Failed

Poll Device Status

Erase Flash

Write Erase Chip
Cmd Sequence

SPRA568A

TMS320C6000 EMIF to External Flash Memory 33

Poll Device Status

Read D0–D7
Addr = VA

Figure 20. Data Poll Flow Chart

No DQ7 = Data
?

No

D5 = 1
?

Yes

Yes

DQ7 = Data Yes
?

No

Fail Pass

Read D0–D7
Addr = VA

SPRA568A

34 TMS320C6000 EMIF to External Flash Memory

5 References
1. TMS320C6000 EMIF to External Asynchronous SRAM Interface (SPRA542).
2. TMS320C6201Digital Signal Processor (SPRS051).

3. TMS320C6202 Fixed-Point Digital Signal Processor (SPRS072).
4. TMS320C6211, TMS320C6211B Fixed-Point DSPs (SPRS073).

5. TMS320C6701 Floating-Point DSP (SPRS067).

6. TMS320C6711, TMS320C6711B Floating-Point DSPs (SPRS088).

7. TMS320C6000 Peripherals Reference Guide (SPRU190).

8. TMS320C6000 Peripheral Support Library Programmers Reference (SPRU273).

9. AM29LV800 Data Sheet, Advanced Micro Devices.

10. AM29LV040 Data Sheet, Advanced Micro Devices.

SPRA568A

TMS320C6000 EMIF to External Flash Memory 35

Appendix A Sample Code for Programming AM29LV800B (ARDY
Interface)

/**/

/* Hardware.c

/* Written by: Kyle Castille

/* Updated by: Michael Haag (6/27/01)

/* This program will create a dummy data buffer with an incrementing count

/* in internal memory, and then program this data to the AM29LV800-90 Flash

/* which is a 1M x 8/512k x 16, 90 ns Flash memory.

/*

/* This program assumes that the ARDY interface is used, so no software

/* checking is done to detect end of operation for erase or program

/*

/**/

#define CE1_ADDRS 0x01400000

#define INT_MEM 0x80000000

#define CE1_CNTRL 0x01800004

#define FLASH_ADDRS CE1_ADDRS

#define SRC_ADDRS INT_MEM

#define LENGTH 0x400

#define TRUE 1

#define FALSE 0

#include <csl.h>

#include <csl_emif.h>

void load_source (short * source, int num_words);

void erase_flash(int * flash_addrs);

void program_flash(short * source, int * flash_addrs, int num_words);

void emif_config();

void

main(){

int * flash_ptr = (int *)FLASH_ADDRS;

short * src_ptr = (short *)SRC_ADDRS;

/* initialize the CSL library */

CSL_init();

SPRA568A

36 TMS320C6000 EMIF to External Flash Memory

emif_config();

load_source(src_ptr, LENGTH);

erase_flash(flash_ptr);

program_flash(src_ptr, flash_ptr, LENGTH);

printf(”Successful erase and program!!!”);

}

/**/

/* emif_config :Routine to configure the Emif for operation with */

/* AM29LV800-90 at CE1. This routine sets the CE1 control register */

/* for a 32 bit asynchronous memory interface with the following */

/* parameters: */

/* Mtype = 010 */

/* Read Setup/Strobe/Hold = 1/21/3 */

/* Write Setup/Strobe/Hold = 2/13/3 */

/* */

/**/

void emif_config()

{

/* Create Global Control Register field */

Uint32 global_ctl = EMIF_GBLCTL_RMK(

EMIF_GBLCTL_NOHOLD_0,

EMIF_GBLCTL_SDCEN_DISABLE,

EMIF_GBLCTL_SSCEN_DISABLE,

EMIF_GBLCTL_CLK1EN_ENABLE,

EMIF_GBLCTL_CLK2EN_DISABLE,

EMIF_GBLCTL_SSCRT_CPUOVR2,

EMIF_GBLCTL_RBTR8_HPRI);

/* Create CE1 Control Register field */

Uint32 ce1_control = EMIF_CECTL_RMK(

EMIF_CECTL_WRSETUP_OF(2),

EMIF_CECTL_WRSTRB_OF(14),

EMIF_CECTL_WRHLD_OF(3),

EMIF_CECTL_RDSETUP_OF(1),

EMIF_CECTL_RDSTRB_OF(21),

EMIF_CECTL_MTYPE_ASYNC32,

EMIF_CECTL_RDHLD_OF(3));

SPRA568A

TMS320C6000 EMIF to External Flash Memory 37

EMIF_configArgs(

 EMIF_GBLCTL_OF(global_ctl), /* global control */

EMIF_CECTL_OF(0x00000018), /* CE0 control */

EMIF_CECTL_OF(ce1_control), /* 32-bit async mem */

EMIF_CECTL_OF(0x00000018), /* CE2 control */

EMIF_CECTL_OF(0x00000018), /* CE3 control */

EMIF_SDCTL_OF(0x0388F000), /* SDRAM control */

EMIF_SDTIM_OF(0x00800040) /* SDRAM timing */

);

}

/***/

/* load_source :Routine to load the source memory with data. This routine */

/* loads an incrementing count into the source memory for */

/* demonstration purposes. */

/* Inputs: */

/* source_ptr : Address to be used as the source buffer */

/* length : Length to be programmed */

/* /

/***/

void load_source(short * source_ptr, int length)

{

int i;

for (i = 0; i < length; i ++){

* source_ptr++ = i;

}

}

/***/

/* erase_flash : Routine to erase entire FLASH memory AM29LV800 (1M x 8bit/ */

/* 512k x 16bit) */

/* Inputs: */

/* flash_ptr: Address of the FLASH PEROM */

/* */

/***/

void erase_flash(int * flash_ptr)

{

/* Control addresses are left shifted so that */

/* they appear correctly on the EMIF’s EA[19:2] */

/* Byte address << 2 == Word Address */

SPRA568A

38 TMS320C6000 EMIF to External Flash Memory

int * ctrl_addr1 = (int *) ((int)flash_ptr + (0x555 << 2));

int * ctrl_addr2 = (int *) ((int)flash_ptr + (0x2aa << 2));;

* ctrl_addr1 = 0x00aa; /* Erase sequence writes to addr1 and addr2 */

* ctrl_addr2 = 0x0055; /* with this data */

* ctrl_addr1 = 0x0080;
* ctrl_addr1 = 0x00aa;
* ctrl_addr2 = 0x0055;
* ctrl_addr1 = 0x0010;

}

/**/

/* program_flash: Routine to program FLASH AM29LV800 */

/* Inputs: */

/* flash_ptr : Address of the FLASH */

/* source_ptr : Address of the array containing the code to program */

/* length : Length to be programmed */

/* */

/**/

void program_flash(short * source_ptr, int * flash_ptr, int length)

{

int i;

/* Control addresses are left shifted so that */

/* they appear correctly on the EMIF’s EA[19:2] */

/* Byte address << 2 == Word Address */

int * ctrl_addr1 = (int *) ((int)flash_ptr + (0x555 << 2));

int * ctrl_addr2 = (int *) ((int)flash_ptr + (0x2aa << 2));;

for (i = 0; i < length; i++){

* ctrl_addr1 = 0x00aa;
* ctrl_addr2 = 0x0055;
* ctrl_addr1 = 0x00a0;
* flash_ptr++ = * source_ptr++;

}

}

TMS320C6000 EMIF to External Flash Memory 39

SPRA68A

Appendix B Sample Code for Programming AM29LV040
/***/

/* Software.c */

/* Written by: Kyle Castille */

/* Updated by: Michael Haag (6/27/01) */

/* This program will create a dummy data buffer with an incrementing count */

/* in internal memory, and then program this data to the AM29LF040-70 Flash */

/* which is a 512k x 8, 70 ns Flash memory. */

/* This program assumes that the ARDY interface is NOT used, therefore */

/* monitoring is done to detect end of operation */

/***/

#define CE1_ADDRS 0x01400000

#define INT_MEM 0x80000000

#define CE1_CNTRL 0x01800004

#define FLASH_ADDRS CE1_ADDRS

#define SRC_ADDRS INT_MEM

#define LENGTH 0x400

#define TRUE 1

#define FALSE 0

#include <csl.h>

#include <csl_emif.h>

void load_source (unsigned char * source, int num_words);

int erase_flash(int* flash_addrs);

int program_flash(unsigned char * source, int * flash_addrs, int num_words);

int poll_data(int *,unsigned char);

void emif_config();

void

main(){

int pass = TRUE;

int * flash_ptr = (int *)FLASH_ADDRS;

unsigned char * src_ptr = (unsigned char *)SRC_ADDRS;

/* initialize the CSL library */

CSL_init();

emif_config();

load_source(src_ptr, LENGTH);

40 TMS320C6000 EMIF to External Flash Memory

SPRA68A

pass = erase_flash(flash_ptr);

if (pass){

pass = program_flash(src_ptr, flash_ptr, LENGTH);

if (!pass)

printf(”Failed in program operation”);

else

printf(”Successful erase and program!!!”);

}

else

printf(”Failed in erase operation”);

}

/***/

/* emif_config :Routine to configure the Emif for operation with */

/* AM29LV040-70 at CE1. This routine sets the CE1 control register */

/* for a 32 bit asynchronous memory interface with the following */

/* parameters: */

/* Mtype = 010 (32-bit async) */

/* Read Setup/Strobe/Hold = 1/17/3 */

/* Write Setup/Strobe/Hold = 2/11/3 */

/* */

/***/

void emif_config()

{

/* Create Global Control Register field */

Uint32 global_ctl = EMIF_GBLCTL_RMK(

EMIF_GBLCTL_NOHOLD_0,

EMIF_GBLCTL_SDCEN_DISABLE,

EMIF_GBLCTL_SSCEN_DISABLE,

EMIF_GBLCTL_CLK1EN_ENABLE,

EMIF_GBLCTL_CLK2EN_DISABLE,

EMIF_GBLCTL_SSCRT_CPUOVR2,

EMIF_GBLCTL_RBTR8_HPRI);

TMS320C6000 EMIF to External Flash Memory 41

SPRA68A

/* Create CE1 Control Register field */

Uint32 ce1_control = EMIF_CECTL_RMK(

EMIF_CECTL_WRSETUP_OF(2),

EMIF_CECTL_WRSTRB_OF(11),

EMIF_CECTL_WRHLD_OF(3),

EMIF_CECTL_RDSETUP_OF(1),

EMIF_CECTL_RDSTRB_OF(17),

EMIF_CECTL_MTYPE_ASYNC32,

EMIF_CECTL_RDHLD_OF(3));

EMIF_configArgs(

EMIF_GBLCTL_OF(global_ctl), /* global control */

EMIF_CECTL_OF(0x00000018), /* CE0 control */

EMIF_CECTL_OF(ce1_control), /* 32-bit async mem */

EMIF_CECTL_OF(0x00000018), /* CE2 control */

EMIF_CECTL_OF(0x00000018), /* CE3 control */

EMIF_SDCTL_OF(0x0388F000), /* SDRAM control */

EMIF_SDTIM_OF(0x00800040) /* SDRAM timing */

);

}

/***/

/* load_source :Routine to load the source memory with data. This routine */

/* loads an incrementing count into the source memory for */

/* demonstration purposes. */

/* Inputs: */

/* source_ptr : Address to be used as the source buffer */

/* code_ptr : Length to be programmed */

/* */

/***/

void load_source(unsigned char * source_ptr, int length)

{

int i;

for (i = 0; i < length; i ++){

* source_ptr++ = i;

}

}

42 TMS320C6000 EMIF to External Flash Memory

SPRA68A

/***/

/* erase_flash : Routine to erase entire FLASH memory AM29LV040 (512Kx8bit) */

/* Inputs: */

/* flash_ptr: Address of the FLASH */

/* Return value: */

/* Returns TRUE if passed, or FALSE if failed. Pass or failure is */

/* determined during the poll_data routine. */

/* */

/***/

int erase_flash(int * flash_ptr)

{

/* Control addresses are left shifted so that */

/* they appear correctly on the EMIF’s EA[19:2] */

/* unsigned char << 2 == Word */

int * ctrl_addr1 = (int *) ((int)flash_ptr + (0x555 << 2));

int * ctrl_addr2 = (int *) ((int)flash_ptr + (0x2aa << 2));

int pass = TRUE;

* ctrl_addr1 = 0xaa; /* Erase sequence writes to addr1 and addr2 */

* ctrl_addr2 = 0x55; /* with this data */

* ctrl_addr1 = 0x80;
* ctrl_addr1 = 0xaa;
* ctrl_addr2 = 0x55;
* ctrl_addr1 = 0x10;

pass = poll_data(flash_ptr, (unsigned char) 0xff);

if (!pass)

printf(”failed erase\n\n”);

return pass;

}

TMS320C6000 EMIF to External Flash Memory 43

SPRA68A

/**/

/* program_flash: Routine to program FLASH AM29LV040(512K x 8bit) */

/* Inputs: q */

/* flash_ptr: Address of the FLASH PEROM */

/* code_ptr : Address of the array containing the code to program */

/* Return value: */

/* Returns TRUE if passed, or FALSE if failed. Pass or failure is */

/* determined during the poll_data routine. */

/* */

/**/

int program_flash(unsigned char * source_ptr, int * flash_ptr, int length)

{

int i;

unsigned char data;

int pass;

/* Control addresses are left shifted so that */

/* they appear correctly on the EMIF’s EA[19:2] */

/* Short << 1 == Word */

int * ctrl_addr1 = (int *) ((int)flash_ptr + (0x555 << 2));

int * ctrl_addr2 = (int *) ((int)flash_ptr + (0x2aa << 2));;

for (i = 0; i < length; i++){

* ctrl_addr1 = 0x00aa;

* ctrl_addr2 = 0x0055;

* ctrl_addr1 = 0x00a0;

* flash_ptr++ = data = * source_ptr++;

pass = poll_data(flash_ptr–1, data);

}

if (!pass)

printf(”Failed at address %x \n\n”, (int) flash_ptr);

return pass;

}

44 TMS320C6000 EMIF to External Flash Memory

SPRA68A

/***/

/* poll_data: Routine to determine if Flash has successfully completed the */

/* program or erase algorithm. This routine will loop until */

/* either the embedded algorithm has successfully completed or */

/* until it has failed. */

/* */

/* Inputs: */

/* prog_ptr : Address just programmed */

/* prog_data: Data just programmed to flash */

/* Return value: */

/* Returns TRUE if passed, or FALSE if failed. */

/* */

/***/

int poll_data(int * prog_ptr, unsigned char prog_data)

{

unsigned char data;

int fail = FALSE;

do {

data = (unsigned char) * prog_ptr;

if (data != prog_data) /* is D7 != Data? */

{

if ((data & 0x20) == 0x20) /*is D5 = 1 ? */

{

data = (unsigned char) * prog_ptr;

if (data != prog_data) /* is D7 = Data? */

fail = TRUE;

else

return TRUE; /* PASS */

}

}

else

return TRUE; /* PASS */

} while (!fail);

return FALSE; /* FAIL */

}

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Overview of EMIF
	2 Flash Memory Interface 9
	List of Tables
	1 Overview of EMIF
	1.1 EMIF Signal Descriptions
	Figure 1. Basic Block Diagram of C6000 EMIF†
	Table 1. EMIF Signal Descriptions: Shared Signals and Asynchronous Signals†

	1.2 EMIF Registers
	Table 2. EMIF Memory Mapped Registers
	Figure 2. C6201/C6202/C6701 EMIF CE Space Control Register Diagram
	Figure 3. C6211/C6711/C64x EMIF CE Space Control Register Diagram
	Table 3. EMIF CE Space Control Registers Bitfield Description

	1.3 C620x/C670x EMIF ROM Modes
	1.4 C6211/C6711/C64x EMIF x8/x16/x32/x64 Asynchronous Modes
	1.4.1 Byte Lane Alignment on the C6211/C6711 EMIF
	Figure 4. Byte Lane Alignment vs. Endianness on the C6211/C6711
	Figure 5. EMIFA (64-Bit Bus) Byte Alignment by Endianness
	Table 4. EMIF Asynchronous Interface Pins
	Figure 7. EMIF 8-/16-Bit Flash Interface With ARDY Interface (16-Bit Mode)
	Table 5. Flash Commands for AMD’s AM29LV800B Devices†
	Table 5. Flash Commands for AMD’s AM29LV800B Devices† (Continued)
	Table 6. Flash Commands for AMD’s AM29LV040B Devices†

	2.1.1 Read/Reset Command
	2.1.2 Chip Erase Command
	2.1.3 Program Command
	2.1.4 Other Commands

	2.2 Device Status
	Figure 9. Program Command Without ARDY Interface – Software Monitoring
	Figure 10. Program Command With ARDY Interface – Hardware Monitoring
	Table 7. Byte Address to EA Mapping for Asynchronous Memory Widths
	Table 8. Example of Write to Flash Memory and Address Shifting
	Table 8. Example of Write to Flash Memory and Address Shifting (Continued)

	2.4 Programmable ASRAM Parameters
	2.5 Margin Considerations
	Table 9. Recommended Timing Margin
	Table 10. EMIF – Input Timing Requirements (Input Data)
	Table 11. EMIF – Output Timing Characteristics (Data, Address, Control)
	Table 12. ASRAM – Input Timing Requirement
	Table 13. ASRAM – Output Timing Characteristics

	2.6 Asynchronous Reads
	Figure 11. C620x/C670x Asynchronous Read Timing Example (1/2/1)
	Figure 12. C6211/C6711/C64x Asynchronous Read Timing Example (1/2/1)

	2.7 Asynchronous Writes
	Figure 13. C620x/C670x Asynchronous Write Timing Example (1/1/1)
	Figure 14. C6211/C6711/C64x Asynchronous Write Timing Example (1/1/1)

	2.8 Read-to-Write Timing for C6211/C6711/C64x
	Figure 15. Turnaround Time on C6211/C6711/C64x
	2.8.2 MTYPE Setting for the C620x/C670x
	2.8.3 MTYPE Setting for the C6211/C6711/C64x

	3 Full Example for Programming AMD’s AM29LV800-90 (ARDY Interface)
	3.1 Hardware Interface
	3.2 Register Configuration
	Table 14. C6201B EMIF – Input Requirements
	3.2.1 Read Calculations
	3.2.2 Write Calculations
	3.2.2.1 MType Setting

	3.3 Software Control
	3.3.1 Read Operation
	3.3.2 Write Operation
	Figure 17. Erase Chip and Program Command Flow Charts

	4 Full Example for Programming AMD’s AM29LV040-70
	4.1 Hardware Interface
	Table 18. C6201B EMIF – Input Requirements
	4.1.1 Read Calculations
	4.1.2 Write Calculations
	4.1.2.1 MType Setting

	4.2 Software Control
	4.2.1 Read Operation
	4.2.2 Write Operation
	Figure 19. Erase Chip and Program Command Flow Charts

	5 References
	Appendix A Sample Code for Programming AM29LV800B (ARDY Interface)
	Appendix B Sample Code for Programming AM29LV040

