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ABSTRACT
This applications note discusses the Hardware Built-In Self-Test (BIST) feature in the F28X7x family of
C2000™ devices. This family includes both single-core (F2837xS and F2807x) and dual-core (F2837xD)
products.
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1 Introduction
HWBIST refers to circuitry and scan patterns generated by an ATPG tool used to screen out logic failures
within the targeted circuitry. This methodology is used extensively in semiconductor device testing. All
C2000 devices make use of some level of hardware-assisted test during device manufacturing. Some of
the newer C2000 devices support customer use of this test technology as part of their system test, to test
the integrity of the CPUs (US 8,799,713 B2). This document describes how and why to make use of
HWBIST at a system level.

Table 1 lists the terms and abbreviations used in this application report.

Table 1. Terms and Abbreviations

Abbreviation Term
ATPG Automatic test pattern generation
BIST Built-In Self-Test
Capture The embedded circuitry capturing the results of the changing logic as the seeds are clocked through

the logic under test
CCS Code Composer Studio™
Context restore The process of restoring the central processing unit (CPU) registers and status flags after completing a

hardware BIST micro-run. This is performed by the software.
Context save The process of saving the CPU registers and status flags before starting a hardware BIST micro-run.

This is performed by the software.
Core bounding The CPU core is disconnected from peripherals and interrupt signals during a micro-run test. After the

test, the core is reconnected to these signals.
Coverage The percentage of the CPU logic that is covered by the hardware BIST.
CPU Central processing unit
CRC Cyclical redundancy check
F2807x Single C28x core Piccolo™ class device
F2837xD Dual C28x core Delfino™ class device
F2837xS Single C28x core Delfino class device
Flash Nonvolatile on-chip memory
FPU Floating point unit
HWBIST Hardware Built-In Self-Test
ISR Interrupt service routine
JTAG Joint test action group. JTAG is a scan-based communications protocol (like I2C) which allows for

scanning to either test circuitry or emulation circuitry.
Micro-run Execution of a portion of a full HWBIST test execution. The HWBIST is designed to support executing

the full coverage test in pieces to better manage interrupt latency and power. These micro-runs must
be executed in smaller time-slices for more efficient task scheduling. During a micro-run, the CPU is
isolated from all peripherals and memory. In addition, interrupts are logged by the HWBIST controller.

MISR Multiple-input signature-register
NMI Nonmaskable interrupt
PEST Periodic self-test
PLL Phase-locked loop
POR Power-on reset
POST Power-on self-test
RAM Random access memory
ROM Read-only memory
Seed Initial states which are loaded into the circuitry using scan paths, so that the circuitry starts out in a

known state before testing begins
Semaphore A mechanism to acquire write access to certain self-test registers by CPU1 or CPU2 used on F2837xD

devices
TMU Trigonometric math unit
TRM Technical reference manual
VCU Viterbi and complex math unit
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On the F28X7x devices, the HWBIST targets the C28x CPU and the FPU, VCU, CRC, and TMU
accelerators. Also included is the emulation analysis circuitry, which manages communications between
these processing elements and the emulator, as well as manages features like breakpoints, watch points,
and single stepping.

The HWBIST does not target the rest of the logic on the device. The other logic on the device may be
tested with other self-test or diagnostic mechanisms.

1.1 HWBIST Overview
Figure 1 shows a block diagram of HWBIST, as used in the C2000 device. The orange and pink portions
show the logic targeted for testing. In system use, this logic is the processing engine for the system code.
Data flows through the latches as the executing system code instructs.

Figure 1. HWBIST Block Diagram

However, these same latches include scan access so that during tests of this logic, a high-speed test flow
can validate the operation of the gates in the circuitry. In the case discussed here there are many parallel
scan paths through the logic so that significant portions of the logic can be tested in parallel. While in this
test mode, the logic does not operates like the processor would when running code.

The Pattern Generator provides seeds to these parallel scan paths to provide activity necessary to
logically validate the operation of the targeted gates. These seeds are computer generated and the
coverage is validated with standard ATPG tools. The seeds are optimized to meet a particular fault grade
target in a minimum number of cycles. The vendors of these optimizers take great pride in this
optimization.

NOTE: This optimization means the switching rates of the transistors is significantly higher than
those occurring when this logic is executing system code. Additionally, this provides very
high fault coverage.

The capture and MISR portion picks up the results of the scanning operation across all the parallel chains.
The interaction of the stepping of the scan patterns through the paths interacts with other logic gates in
the circuitry tied to the latches. The optimization software injects faults into the gates, and if the MISR
does not recognize a failure, then additional seeds are necessary to validate the faulted gate. The
optimizer is given a coverage target and will continue to generate seeds until this metric is met. Reaching
coverage of 60% is relatively simple; reaching 95% takes significantly more seeds, and reaching 99%
requires significantly more seeds than 95% does.

NOTE: As the bits are driven through the parallel scan paths, the contexts of all the targeted latches
are changed multiple times. Stated differently, any context in these latches before testing is
completely lost during the test. The context is restored through a combination of hardware
logic and software.

The clocking of the scan operations is driven by SYSCLK. The BIST controller manages how the data is
shifted and clocked during the scan flow. The BIST controller also manages the loading of seeds and
comparison values for the MISR. In device manufacturing test flow, the BIST controller and clock source
are established using a device test port like JTAG.
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This is an oversimplified description of this testing methodology. A number of detailed and scholarly
articles on scan-based testing are available on the web.

1.1.1 HWBIST Working In-System
As stated earlier, some C2000 devices support the use of the HWBIST to screen the CPU for logic failures
in the system rather than just during device manufacture testing. Figure 2 shows a block diagram, which
includes the additional circuitry to support this option.

Figure 2. HWBIST In-System Block Diagram

When using HWBIST in a device test environment, testers manage each targeted logic portion to provide
the overall test of the device. However, when the device is in a system, aspects of the system may be
adversely affected by the activity of the under test targeted logic. These aspects are both on the device
and outside the device. For this reason, the HWBIST includes a barrier around the targeted logic so that
the activity of the HWBIST testing is isolated from the rest of the system. The CPU is disconnected from
peripherals and interrupt signals during a micro-run test. After the test, the core is reconnected to these
signals. This is known as core bounding. In Figure 2, the isolation barrier is shown in green. It is also true
that the logic under test must be isolated from activity elsewhere in the system. This barrier provides this
as well.

However, if the system must get the attention of the CPUs under test, then it can provide interrupts. These
interrupts are captured in a buffer and provided to the CPU logic under test when the BIST controller
releases the targeted logic. The complete coverage testing of the targeted logic takes a while. The higher
the coverage goal, the longer it takes. The BIST controller in the C2000 devices executes and validates
the total coverage seeds in small portions to minimize the latency to these captured interrupts. This also
addresses some of the power concerns of the higher transistor switching rates generated through the
parallel scan paths.

In extreme situations, the system resources can generate an NMI that halts the HWBIST operation and
brings back the CPU under test using a HWBIST Reset. As soon as the context restore is complete, the
NMI vector is taken and the NMI service routine can decode the NMI flag register to determine the source
of the interruption. The NMI will trap before the HWBIST software returns to the calling sequence. The
user application must manage the NMI responses accordingly.

A significant difference between device-manufacturing HWBIST and in-system HWBIST, is that the device
tester communicates with the BIST controller over a test port, while the in-system HWBIST uses the CPU
to communicate with the BIST controller. The CPU that the HWBIST is testing, is the CPU which manages
the HWBIST controller. More specifically, the C28x CPU under test, where all the latches are changed
multiple times, controls the BIST operation.
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Here is how this process works, code running on the CPU does the following:
1. Initializes the mode of operation in the HWBIST – Maps the CPU reset to respond to the HWBIST

return to service routine specially coded for return from HWBIST.
2. Turns on the Interrupt Capture Buffer.
3. Saves the context of the CPU and the associated code-based accelerators.
4. Starts up the small time-slice of the HWBIST execution – At this point the CPU stops being a CPU and

starts being logic under test.
5. Upon completion of the small time-slice of the HWBIST execution the HWBIST controller:

• Captures the results in a status register – If a logic failure is detected, the BIST controller
generates a NMI to the CPU.

• Generates CPU reset to the CPU logic:
– This reset puts the CPU into a known and controlled state.
– Upon release of this reset, the logic under test becomes a CPU again.

6. The CPU executes the HWBIST reset service routine:
• Restores saved context
• Shuts down residuals of the HWBIST controller operation
• Releases the interrupts stored in the Interrupt Capture Buffer
• Returns to the calling sequence with the resulting status provided by the return statement

All of the operations listed in the previous outline are executed in the C2000 SafeTI™ Diagnostic Library.
The details of how the system code calls this driver are provided in Section 2 of this document.

While the HWBIST is executing, other aspects of the system can operate as well. As previously
mentioned, interrupts coming from off-chip or on-chip sources are saved in the Interrupt Capture Buffer.
However, triggers mapped to DMA channels are processed while the HWBIST is actively testing the CPU.
For example, system-related commands from a SCI or I2C port can be collected and moved from the port
to system memory to be processed as soon as Step 6 is completed. This is because all the device buses
are isolated using the HWBIST Barrier.
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1.2 HWBIST Failure Response
As mentioned earlier, when the C28x CPU starts the HWBIST controller, the CPU shuts down so that the
logic inside can be tested by the HWBIST engine. Figure 3 shows the flow of this action in the state
diagram.

Figure 3. HWBIST State Diagram

When the HWBIST detects a failure, it sets the appropriate bit in the HWBIST Status register and exits the
HWBIST operation. This error can come in the form of the following:
• Logic failure was detected
• HWBIST controller timed out without the micro-run completing

In either case, the HWBIST controller saves the failure information into the HWBIST status register,
generates a NMI to the processor, and sets the appropriate bits in the NMI flag register. In a dual
processor device, the HWBIST controller generates NMIs to each processor.
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1.3 Advantages of Using HWBIST In-System
There are a number of reasons to use HWBIST in a system. Five legitimate examples follow:
• Validate that the C2000 device is correctly connected in the system during the initial design validation

and debug of the system.
HWBIST may be too rigorous for this aspect of prototype debug. The emulator provides simpler
methods for this effort.

• Validate that the C2000 device is still functional after being attached to the board.
As part of the system manufacture, it is useful to know that the part has not been damaged during
board manufacturing. A board manufacturing event is most likely to catastrophically damage the
device, in which case the HWBIST cannot be run in-system. Additionally, the damage will most likely
be done to the pin driver/buffers, peripheral circuitry, or embedded memories, which are not tested by
the HWBIST. It is highly unlikely that board or system manufacturing events would damage only the
circuitry targeted by the HWBIST. It is uncommon for damage to occur to the device during board
manufacture. However, if the device is damaged, it is good to know early so that adjustments can be
made on the board manufacturing line.

• Check whether the device has been damaged after working properly in the system – Damage to the
device is most likely to occur due to one of the following causes:
– Overstress during power up
– Overstress during power down
– Voltage overstress due to power supply event
– Temperature overstress

Running the HWBIST at system start-up addresses the first two causes. System temperature and
voltage monitors address the remaining two causes

• Monitor the device for manufacture test escapes.
This is not an effective use for the HWBIST in the system, because the HWBIST has already been run
in the device tester environment where it can be executed with significantly higher margin, both voltage
and temperature. However, if the HWBIST does capture a failure, this is a cause for concern that
something in the system is operating well outside the operating range defined in the data sheet. This
may not be measureable at the pins of the device, because it may be a momentary event.

• Monitor the device for degrading mechanisms.
Some level of transistor degradation is normal and expected with use of the circuitry. This is minor and
the design and device testing includes a margin to compensate for this drift.
Additionally, there will be some latent defects that are not screenable with normal device testing
methods. These defect mechanisms require some level of stressing to accelerate failures. Stress
testing is used in the device manufacturing test to accelerate the majority of these degrading defect
mechanisms.
Lastly, the HWBIST helps identify these degrading mechanisms that escape the aggressive device
manufacture testing.
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2 Using HWBIST In-System
This section describes how to use the HWBIST in a system and is tightly coupled with the software
releases in the C2000 SafeTI Diagnostic Library for F28X7x devices. The description starts with a simple
explanation of running the HWBIST on a single core. The section then details the additional code
necessary to run on a dual-core device. This section finishes with a discussion of debugging suggestions.

NOTE: The software for the configuration and execution of the HWBIST, released in the C2000
SafeTI Diagnostic Library, must not be modified by the user. If the initialization and execution
of the HWBIST is modified, the documented coverage is not guaranteed.

2.1 Fundamental HWBIST on Single-Core Device
Executing the HWBIST involves the following four code segments:
• Initialize the HWBIST controller
• Execute the HWBIST
• Recover from the HWBIST
• Manage results

Most of this is accomplished by Diagnostic Library functions which can be called. The function definitions
are provided in the header file, stl_hwbist.h. More details on these function descriptions is in stl_hwbist.h
or Diag_Lib_TMS320F2837x_07x_Users_Guide, which is in the /docs folder of the library release
package.

There are eight functions included, as follows:
__interrupt void STL_HWBIST_errorNMIISR(void);
uint16_t STL_HWBIST_runFull(const STL_HWBIST_Error errorType);
uint16_t STL_HWBIST_runMicro(void);
void STL_HWBIST_restoreContext(void);
void STL_HWBIST_init(const STL_HWBIST_Coverage coverage);
void STL_HWBIST_injectError(const STL_HWBIST_Error errorType);
bool STL_HWBIST_claimSemaphore(const STL_HWBIST_Core core);
void STL_HWBIST_releaseSemaphore(void);

Use of these routines is described in the following subsections.

2.1.1 Initializing the HWBIST Controller
Initializing the HWBIST controller is accomplished by calling this library function:
void STL_HWBIST_init(const STL_HWBIST_Coverage coverage);

This function initializes the HWBIST controller for operation. The coverage parameter is an enumerated
type STL_HWBIST_Coverage and specifies the coverage to achieve. This function expects the HWBIST
semaphore to be claimed by the CPU trying to execute a run on the HWBIST. This function initializes the
HWBIST registers for the following configuration:
• 46-cycle micro-runs for the first 95% coverage and 61-cycle micro-runs for the incremental coverage to

get to 99%:
– Minimizes the time-slice of the micro-run
– Minimizes the context latency
– Minimizes the power consumption during the micro-run

• HWBIST clock equal to system clock
• Return address is 0x0000, which is the beginning of the RAMM0 block of memory.
• 95% or 99% coverage – This is specified by the input parameter coverage.
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2.1.2 Code Composer Studio™ Project Configuration
The HWBIST executes across both the VCU and FPU, and the Diagnostic Library HWBIST code executes
a full context save and restore for these components. Therefore, for the project to correctly compile and
link, it is necessary to specify both fpu32 and VCU2 support in the Processor Options window of the
Project Properties. To get to this, type ALT-Enter or right-click on the project in the Project Explorer and
clock Properties to open the Project Properties window, then click on Processor Options to bring up the
Specify options.

In addition, the following line must be added at the beginning of the linker command file:
-u _STL_HWBIST_restoreContext

This line allows the HWBIST recovering code to map the return vector (0x0000).

Also, a HWBIST linker section must be defined, as follows, in the linker command file:
Linker Command File MEMORY:
HWBIST : origin = 0x000000, length = 0x000020

The hwbist memory section must be mapped to the HWBIST linker section. See the following for an
example where hwbist is initially loaded to flash. Linker command symbols are created to facilitate a
memory copy to the HWBIST linker section at 0x0000.
Linker Command File SECTIONS:

/* Must be placed at 0x0000 */
hwbist : LOAD = FLASHJ,

RUN = HWBIST,
LOAD_START(_HwbistLoadStart),
LOAD_SIZE(_HwbistLoadSize),
LOAD_END(_HwbistLoadEnd),
RUN_START(_HwbistRunStart),
RUN_SIZE(_HwbistRunSize),
RUN_END(_HwbistRunEnd),
PAGE = 0, ALIGN(4)

Furthermore, the hwbiststack memory section must be allocated to RAM and contained within a 16-bit
memory address. This hwbiststack section is used for a context save and restore for each micro-run.

Lastly, source code must be added to the main application, to perform the necessary memory copy of
hwbist to the return vector 0x0000, defined by the HWBIST linker section.

Source Code File Externs:
extern uint16_t HwbistLoadStart;
extern uint16_t HwbistLoadSize;
extern uint16_t HwbistRunStart;

Source Code File Code:
memcpy(&HwbistRunStart, &HwbistLoadStart, (size_t)&HwbistLoadSize);

For a more complete example, see the self-test application (STA) in the Diagnostic Library software
release package.
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2.1.3 Executing HWBIST
The HWBIST executes a number of micro-run operations until the full coverage is met. The Diagnostic
library provides two options for completing HWBIST. The first option is to initialize the HWBIST controller
once per full HWBIST, using STL_HWBIST_init(), and then execute STL_HWBIST_runMicro() periodically
until the HWBIST completes. This options allows for smaller time-slicing of the HWBIST. The second
option is to call STL_HWBIST_runMicro(), which completes a full HWBIST run, and then returns to the
user’s code. This option takes a longer amount of time and is more useful for a power-on self-test or
whenever more time may be allocated to perform a full HWBIST.

2.1.3.1 Executing HWBIST Micro-Run
To execute one micro-run of the HWBIST after the semaphore has been claimed by the CPU core under
test and a 1-time initialization has been performed, the user must call the following function:
STL_HWBIST_runMicro();

This function performs a HWBIST micro-run of the CPU under test.

This function expects the HWBIST semaphore to be claimed by the CPU trying to run a full HWBIST, by
calling this function multiple times in-system. This function also expects the HWBIST engine to be
initialized with STL_HWBIST_init(). This function performs a HWBIST micro-run and returns the status of
the micro-run. Before returning, the function restores the previous NMI vector.

This function performs a HWBIST micro-run and is designed to be used as a periodic self-test (PEST).

If the HWBIST is being used on a dual-core device, then for the HWBIST to run and test the CPU in use,
the HWBIST semaphore must be claimed by that CPU trying to use the HWBIST engine. It uses
STL_HWBIST_claimSemaphore() until it returns true, and then releases the semaphore using
STL_HWBIST_releaseSemaphore() so the other CPU can claim the HWBIST semaphore.

If the HWBIST micro-run test passes with no errors, then this function returns the status, the value is
either STL_HWBIST_MACRO_DONE or a bitwise OR of the values STL_HWBIST_BIST_DONE, and
STL_HWBIST_MACRO_DONE. If the test fails, then the status of the HWBIST and the return value of the
function is a bitwise OR of some combination of the following values: STL_HWBIST_NMI,
STL_HWBIST_BIST_FAIL, STL_HWBIST_INT_COMP_FAIL, and STL_HWBIST_TO_FAIL. These macros
are defined in stl_hwbist.h.

Table 2 lists the meaning of each macro or bit of the return value.

Table 2. STL_HWBIST_runMicro() Return Values

STL_HWBIST Macro Meaning
STL_HWBIST_DONE The full HWBIT operation is complete. This could mean the HWBIST has completed the

necessary micro-runs to meet the coverage metric, or that the HWBIST has detected an
error.

STL_HWBIST_MACRO_DONE The micro-run has completed.
STL_HWBIST_NMI An NMI was generated by the HWBIST controller. This could be due to the following:

• External NMI
• Time-out failure in the controller
• Logic error was detected by the HWBIST operation.

STL_HWBIST_BIST_FAIL The HWBIST detected an error. This could be due to the following:
• Time-out failure in the controller
• Logic error was detected by the HWBIST operation.

STL_HWBIST_INT_COMP_FAIL The HWBIST detected a logic failure.
STL_HWBIST_TO_FAIL The HWBIST controller detected a time-out failure.
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Figure 4 shows is a flow chart detailing the design of the STL_HWBIST_runMicro() function. This
information is also available in the Diagnostic Library User's Guide.

Figure 4. STL_HWBIST_runMicro() Flow Chart
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To perform a full HWBIST with 95% coverage using the STL_HWBIST_runMicro() function, the following
sequence of functions must be executed:
1. Claim the HWBIST semaphore.

STL_HWBIST_claimSemaphore();

2. Initialize the HWBIST for 95% coverage.
STL_HWBIST_init(STL_HWBIST_95_LOS);

3. Execute a HWBIST micro-run.
STL_HWBIST_runMicro();

4. Repeat Step 3 until complete or no error is observed – Execute STL_HWBIT_runMicro() 1700 times
until it is complete with no error, or until an error is observed through the return value, a global error
flag is set, or an NMI is triggered.

5. Release the HWBIST semaphore.
STL_HWBIST_releaseSemaphore();

To perform a full HWBIST with 99% coverage using the STL_HWBIST_runMicro() function, the following
sequence of functions must be executed:
1. Claim the HWBIST semaphore.

STL_HWBIST_claimSemaphore();

2. Initialize the HWBIST for 95% coverage.
STL_HWBIST_init(STL_HWBIST_95_LOS);

3. Execute a HWBIST micro-run.
STL_HWBIST_runMicro();

4. Repeat Step 3 until complete or no error is observed – Execute STL_HWBIT_runMicro() 1700 times
until it is complete with no error, or until an error is observed through the return value, a global error
flag is set, or an NMI is triggered.

5. Initialize the HWBIST for 99% coverage.
STL_HWBIST_init(STL_HWBIST_99_LOS);

6. Execute a HWBIST micro-run.
STL_HWBIST_runMicro();

7. Repeat Step 6 until complete or no error is observed – Execute STL_HWBIT_runMicro() 300 times
until it is complete with no error, or until an error is observed through the return value, a global error
flag is set, or an NMI is triggered.

8. Release the HWBIST semaphore.
STL_HWBIST_releaseSemaphore();

As previously detailed, to perform a HWBIST with 99% coverage, the HWBIST controller must first
complete a HWBIST full run for 95% coverage, and then be reinitialized for 99% and executed again until
it completes. It takes 1700 micro-runs to achieve 95% coverage and an additional 300 micro-runs to
achieve the additional 4% for a total of 99% coverage.
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Figure 5 shows a flow chart of the setup and execution of a single time-sliced micro-run.

Figure 5. Flow Chart of Time-Sliced Micro-Run Execution

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACA7


Using HWBIST In-System www.ti.com

14 SPRACA7–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

C2000™ Hardware Built-In Self-Test

2.1.3.2 Executing HWBIST Full-Run
To execute a full run of the HWBIST after the semaphore has been claimed by the CPU core under test,
call the following function:
STL_HWBIST_runFull();

This function performs a full HWBIST of the CPU under test.

The errorType parameter is an enumerated type STL_HWBIST_Error, which specifies the type of error to
inject before executing a full run of HWBIST test. This function expects the CPU trying to run a full
HWBIST to claim the HWBIST semaphore by calling it. This function initializes the HWBIST engine and
then injects the errorType. It also registers the STL_HWBIST_NMIISR as the NMI vector. The function
then performs a full HWBIST, achieving first the 95% launch-on-shift coverage and then achieving 99%
coverage by testing for stuck-at-faults. If there is a failure in the HWBIST, then a global error flag is set
and the return value specifies a failure. Additionally, if the coverage is not achieved in the expected micro-
runs then the test fails due to an overrun. Before returning, the function restores the previous NMI vector.

If the HWBIST is being used on a dual-core device, then for the HWBIST to run and test the CPU in use,
the HWBIST semaphore must be claimed by that CPU trying to use the HWBIST engine, using
STL_HWBIST_claimSemaphore(), until it returns true and then release the semaphore using
STL_HWBIST_releaseSemaphore(), for the other CPU to be able to claim the HWBIST semaphore.

If the HWBIST full run test passes with no errors within the expected number of micro-runs, then this
function returns the status of the HWBIST and the value will be a bitwise OR of the values
STL_HWBIST_BIST_DONE, and STL_HWBIST_MACRO_DONE. If the test fails, then the status of the
HWBIST and the return value of the function is a bitwise OR of some combination of the following values:
STL_HWBIST_NMI, STL_HWBIST_BIST_FAIL, STL_HWBIST_INT_COMP_FAIL,
STL_HWBIST_TO_FAIL, and STL_HWBIST_OVERRUN_FAIL.

Table 3 lists the meaning of each macro or bit of the return value.

Table 3. STL_HWBIST_runFull() Return Values

STL_HWBIST Macro Meaning
STL_HWBIST_DONE The full HWBIT operation is complete. This could mean the HWBIST has completed the

necessary micro-runs to meet the coverage metric, or it could mean that HWBIST has
detected an error.

STL_HWBIST_MACRO_DONE The micro-run is complete.
STL_HWBIST_NMI An NMI was generated by the HWBIST controller. This could be due to either:

• External NMI
• Time-out failure in the controller
• Logic error detected by the HWBIST operation

STL_HWBIST_BIST_FAIL The HWBIST detected an error. This could be due to either:
• Time-out failure in the controller
• Logic error was detected by the HWBIST operation.

STL_HWBIST_INT_COMP_FAIL The HWBIST detected a logic failure.
STL_HWBIST_TO_FAIL The HWBIST controller detected a time-out failure.
STL_HWBIST_OVERRUN_FAIL The HWBIST controller did not complete a full HWBIST in the expected number of

micro-runs.
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Figure 6 shows a flow chart detailing the design of the STL_HWBIST_runFull() function. This information
is also available in the Diagnostic Library User's Guide.

Figure 6. STL_HWBIST_runFull() Flow Chart
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To perform a full HWBIST with 99% coverage using the STL_HWBIST_runFull() function, execute the
following sequence of functions:
1. Claim the HWBIST semaphore.

STL_HWBIST_claimSemaphore();

2. Execute a HWBIST full run.
STL_HWBIST_runFull();

3. Release the HWBIST semaphore.
STL_HWBIST_releaseSemaphore();

This sequence executes a full HWBIST in a single time-slice. Figure 7 shows a full HWBIST run in a
single time-slice.

Figure 7. Full HWBIST in Single Time-Slice

2.1.4 Error Management
A failing condition from a HWBIST execution is a serious situation. If this occurs, then the behavior of the
CPU that failed cannot be ensured. Code that takes appropriate action to gracefully shut down the system
must be included. This can be done by decoding the return value of STL_HWBIST_runFull() or
STL_HWBIST_runMicro().

The code can be managed through a trap to the NMI. This is the quicker method for managing a HWBIST
failure, especially in the case of a dual CPU device, because the NMI is sent to both CPUs. To take
advantage of the NMI traps, the system code must do the following:
1. Clear any NMI trap residual from the NMI flag register:

SysCtl_clearNMIStatus(STL_HWBIST_NMI_CPU1_HWBISTERR);

SysCtl_clearNMIStatus(STL_HWBIST_NMI_CPU2_HWBISTERR);
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2. Map the NMI vector to the Interrupt Service Routine that handles HWBIST:

Interrupt_register(INT_NMI, STL_HWBIST_errorNMIISR);

3. Enable the PIE controller:

HWREGH(PIECTRL_BASE + PIE_O_CTRL) |= PIE_CTRL_ENPIE;

This bit is set on the CPU being tested by the HWBIST as part of the HWBIST execution while
loop, but it must also be set on the other CPU (in a dual-CPU device) for it to respond to the failure.

The following code shows how the NMI results may be decoded. Code must be added to manage the
graceful shut-down of the system. This code may be different depending on whether it is run on CPU1 or
CPU2 and which CPU fails.

NMI Interrupt Service Routine to Handle HWBIST Errors:
//*****************************************************************************
//
// STL_HWBIST_NMIISR(void)
//
//*****************************************************************************
__interrupt void STL_HWBIST_errorNMIISR(void)
{

//
// Check for HWBIST error.
//
if((SysCtl_getNMIFlagStatus() & STL_HWBIST_NMI_CPU1_HWBISTERR) ==

STL_HWBIST_NMI_CPU1_HWBISTERR)
{

//
// Report global error.
//
STL_Util_setErrorFlag(STL_UTIL_HWBIST_NMI_INT);

//
// Clear the NMI CPU1 HWBIST Error flag and NMIINT flag if it is
// the only flag left.
//
SysCtl_clearNMIStatus(STL_HWBIST_NMI_CPU1_HWBISTERR);

//
//** To Do:
//** Add code to manage HWBIST fault and gracefully shut down system.
//

}
if((SysCtl_getNMIFlagStatus() & STL_HWBIST_NMI_CPU2_HWBISTERR) ==

STL_HWBIST_NMI_CPU2_HWBISTERR)
{

//
// Report global error.
//
STL_Util_setErrorFlag(STL_UTIL_HWBIST_NMI_INT);

//
// Clear the NMI CPU2 HWBIST Error flag and NMIINT flag if it is
// the only flag left.
//
SysCtl_clearNMIStatus(STL_HWBIST_NMI_CPU2_HWBISTERR);

//
//** ToDo:
//** Add code to manage HWBIST fault and gracefully shut down system.
//

}
}
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Figure 8 shows the NMIFLG register with the CPU1HWBISTERR and CPU2HWBISTERR bits from the
TMS320F2837xD Dual-Core Delfino Technical Reference Manual for F2837xD devices. Corresponding
bits exist in the TRMs for F2837xS and F2807x devices.

Figure 8. NMIFLG Register
15 14 13 12 11 10 9 8

RESERVED RESERVED CPU2NMIWDR
Sn

CPU2WDRSn RESERVED

R-0h R-0h R-0h R-0h R-0h

7 6 5 4 3 2 1 0
RESERVED PIEVECTERR CPU2HWBIST

ERR
CPU1HWBIST

ERR
FLUNCERR RAMUNCERR CLOCKFAIL NMIINT

R-0h R-0h R-0h R-0h R-0h R-0h R-0h R-0h

(1) This bit is reserved for the CPU2.NMIFLG register.

Table 4. NMIFLG Register Field Descriptions

Bit Field Type Reset Description
15-11 RESERVED R 0h Reserved

10 CPU2NMIWDRSn R 0h CPU2 NMIWDRSn Reset Indication Flag (1). This bits indicates if
NMIWDRSn of CPU2 was fired or not:
• 0 = CPU2.NMIWDRsn was not fired.
• 1 = CPU2.NMIWDRSn was fired to CPU2.
Reset type: XRSn

9 CPU2WDRSn R 0h CPU2 WDRSn Reset Indication Flag (1). This bits indicates if WDRSn
of CPU2 was fired or not:
• 0 = CPU2.WDRsn was not fired.
• 1 = CPU2.WDRSn was fired to CPU2.
Reset type: XRSn

8-7 RESERVED R 0h Reserved
6 PIEVECTERR R 0h PIE Vector Fetch Error Flag. This bit indicates if an error occurred on

an Vector Fect by the other CPU in the device. For example,
CPU1.NMIWD gets an NMI on an Vector fetch Error on CPU2. This
bit can only be cleared by the user writing to the corresponding clear
bit in the NMIFLGCLR register or by an XRSn reset:
• 0 = No Vector Fetch Error condition (on the other CPU) pending
• 1 = Vector Fetch error condition (on the other CPU) generated
Reset type: XRSn

5 CPU2HWBISTERR R 0h HWBIST Error NMI Flag. This bit indicates if the time-out error or a
signature mismatch error condition during hardware BIST of C28
CPU2 occurred. This bit can only be cleared by the user writing to
the corresponding clear bit in the NMIFLGCLR register or by an
XRSn reset:
• 0 = No C28 HWBIST error condition pending
• 1 = C28 BIST error condition generated
Reset type: XRSn

4 CPU1HWBISTERR R 0h HWBIST Error NMI Flag: This bit indicates if the time-out error or a
signature mismatch error condition during hardware BIST of C28
CPU1 occurred. This bit can only be cleared by the user writing to
the corresponding clear bit in the NMIFLGCLR register or by an
XRSn reset:
• 0 = No C28 HWBIST error condition pending
• 1 = C28 BIST error condition generated
Reset type: XRSn
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Table 4. NMIFLG Register Field Descriptions (continued)
Bit Field Type Reset Description
3 FLUNCERR R 0h Flash Uncorrectable Error NMI Flag: This bit indicates if an

uncorrectable error occurred on a C28 flash access and that
condition is latched. This bit can only be cleared by the user writing
to the corresponding clear bit in the NMIFLGCLR register or by an
XRSn reset:
• 0 = No C28 flash uncorrectable error condition pending
• 1 = C28 flash uncorrectable error condition generated
Reset type: XRSn

2 RAMUNCERR R 0h RAM Uncorrectable Error NMI Flag: This bit indicates if an
uncorrectable error occurred on a RAM access (by any master) and
that condition is latched. This bit can only be cleared by the user
writing to the corresponding clear bit in the NMIFLGCLR register or
by an XRSn reset:
• 0 = No RAM uncorrectable error condition pending
• 1 = RAM uncorrectable error condition generated
Reset type: XRSn

1 CLOCKFAIL R 0h Clock Fail Interrupt Flag: These bits indicates if the CLOCKFAIL
condition is latched. These bits can only be cleared by the user
writing to the respective bit in the NMIFLGCLR register or by an
XRSn reset:
• 0 = No CLOCKFAIL condition pending
• 1 = CLOCKFAIL condition generated
Reset type: XRSn

0 NMIINT R 0h NMI Interrupt Flag: This bit indicates if an NMI interrupt was
generated. This bit can only be cleared by the user writing to the
respective bit in the NMIFLGCLR register or by an XRSn reset:

• 0 = No NMI Interrupt generated
• 1 = NMI Interrupt generated
No further NMI interrupts pulses are generated until this flag is
cleared by the user.
Reset type: XRSn
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2.2 Managing HWBIST on Dual-Core Device
F2837xD dual-core devices support HWBIST testing on each core. Only one core at a time can run
HWBIST. To manage this HWBIST controller, certain semaphore registers allow one processor to own the
HWBIST controller until it is complete. Upon completion of a full HWBIST, the tested processor should
release the semaphore control to the other processor so that it can run the HWBIST.

2.2.1 Semaphore Management
Semaphore management on F2837xD devices is handled using the following function calls, which access
the CSTCSEM register:
STL_HWBIST_claimSemaphore(const STL_HWBIST_Core core);

STL_HWBIST_releaseSemaphore(void);

• After system reset, the HWBIST semaphore = 0.
– CPU1 can access the HWBIST resources and change the semaphore.
– CPU2 can change the semaphore.

• When CPU1 decides to execute HWBIST, it sets the semaphore = 2.
– Grants CPU1 access of the HWBIST resources
– Blocks CPU2 access of the HWBIST resources and blocks a change of the semaphore

• When CPU1 completes the HWBIST test, it sets the semaphore = 3, which grants access to the
semaphore by either CPU.

• When CPU2 decides to execute HWBIST, it sets the semaphore = 1.
– Grants CPU2 access of the HWBIST resources.
– Blocks CPU1 access to the HWBIST resources and blocks a change of the semaphore.

• When CPU2 completes the HWBIST test, it sets the semaphore = 3, which grants access to the
semaphore by either CPU.

2.2.2 Interprocessor Communications
The Interprocessor Communications (IPC) peripheral can easily manage the level of communications
needed to keep each processor (CPU1 and CPU2) informed if the other intends to run the HWBIST. For
example, if a critical system interrupt must be monitored and mapped to CPU1, it may be advantageous to
map this interrupt to CPU2 while CPU1 executes HWBIST operations. IPC messages and interrupts can
be employed to achieve this interprocessor communication between CPU1 and CPU2. IPC can also be
used to implement some handshaking between the two processors when handling the semaphore
management.

2.3 System Considerations When Using HWBIST
In summary, while the HWBIST micro-run executes, the targeted CPU is, for all practical purposes, gone
from the system.

2.3.1 Interrupt Latency
With a 200-MHz system clock, a minimum-sized micro-run takes approximately 2.5 µs. The 2.5 µs value
implies running from 0 wait state SRAM and takes longer with the wait-states of the flash memory. This
brings up the following points to consider:
• Are there any system-critical interrupts that cannot wait out the 2.5 µs? Think in terms of interrupts that

want to shut down the control operation due to an identified system fault. If there are, then these
interrupts must be rerouted to the other processor, or a DMA channel for emergency processing while
the HWBIST micro-run owns the CPU circuitry. Additionally, the system critical interrupt or task may be
mapped to the NMI which would stop the HWBIST micro-run execution.

• Is the control loop within 2.5 µs of needing an update from the feedback? If so, do not start the
HWBIST until after this update is completed and you have adequate time before the next update, or
manage the update with a DMA channel.
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• Is there a time slot in the control loop where 2.5 µs is available for executing the HWBIST micro-run? If
yes, then this may be a suitable time slot to perform a HWBIST micro-run.

2.3.2 Power Considerations
A minimum-sized micro-run takes an additional 40 to 70 mA more power than a code running on the CPU.
Users should consider the following:
• Immediately after a Power-On Reset (POR) and the completion of the boot ROM start-up code, most

of the peripherals are not yet running. Therefore, running HWBIST before the system begins executing
control loops will allow for a more-than-adequate power margin to handle the extra current.

• If the HWBIST is executed while a significant amount of the device circuitry is active and at a high
temperature, then either:
– Include some extra power margining in the system design
– Execute micro-runs with /2 or /4 clocking

This second option increases the execution and interrupt latency time to 2x or 4x, respectively.
Additionally, this option would require a source code change and additional testing of the HWBIST
functions in the Diagnostic Library. To divide the clock by 2, a value of 1 must be written to bits 18-19 of
CSTCGCR7. To divide the clock by 4, a value of 2 must be written to bits 18-19 of CSTCGCR7. This
source code modification should be made in the appropriate location of the STL_HWBIST_init() function.

2.3.3 HWBIST Memory Requirements
Three ranges of memory are reserved for HWBIST operation, as follows:
• 32 words starting at CPU address 0x0000 – This is the only specific memory address requirement and

is used by the hwbist memory section.
• 80 words of the stack range for a full context save:

– Must be contained within a 16-bit memory address
– Used to place the hwbiststack memory section

• Approximately 150 words for the HWBIST utility code

2.3.4 Injecting Errors
The HWBIST includes some error injection features to help validate the system error handling code.
These errors can be invoked by running the following function:
void STL_HWBIST_injectError(const STL_HWBIST_Error errorType);

Table 5 lists the injected error types, values, and expected behaviors.

Table 5. Injecting Errors, Values, and Behaviors

STL_HWBIST_ERROR Type Value Description and Behavior

STL_HWBIST_NO_ERROR 0x00000000
Clears the error injection feature for future operation
The HWBIST passes under normal operation, if no faults present.

STL_HWBIST_TIMEOUT 0x0000000A

Invokes a time-out error
This is related to the timer in the HWBIST controller. If the HWBIST
controller times out during a micro-run, then the micro-run has lost
control.
This generates a time-out failure flag and an NMI to the CPU or to
both CPUs in a dual-core device.

STL_HWBIST_FINAL_COMPARE 0x000000A0

Corrupts the MISR compare
The HWBIST executes as normal, but compares to a corrupted
MISR upon completion. This does not cause a failing condition, but it
does allow the CPU to check the MISR for circuit issues.
No NMI is generated, and no fail status is generated.
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Table 5. Injecting Errors, Values, and Behaviors (continued)
STL_HWBIST_ERROR Type Value Description and Behavior

STL_HWBIST_NMI_TRAP 0x00000A00

Forces an NMI to the HWBIST controller to invoke a shut down and
returns control to the CPU
The micro-run is stopped before beginning the HWBIST micro-run
execution and an NMI is generated to the CPU under test.

NOTE: Although an NMI is triggered, no
NMI flags are set.

STL_HWBIST_LOGIC_FAULT 0x00002000

Injects a logic error into the circuitry under test to see if it is caught
by the HWBIST
This results in the appropriate HWBIST fail status bits being set, and
generates an NMI to the CPU or to both processors if a dual CPU
device.

NOTE: Valid logic error injection values are
from 0x00001000 to 0xFFFFF000.
The Diagnostic Library only
supplies one value (0x00002000).
However, the user may wish to
modify the source code to allow for
writing other or multiple logic error
injection values to the CSTCTEST
register. See the source code in
stl_hwbist.h of the Diagnostic
Library.

If the code is lost during debugging error management, the most likely cause is that the NMI execution is
not appropriately initialized. Additionally, see Section 2.1.4.

Table 6 lists the expected results when injecting errors into a HWBIST full run, for example,
STL_HWBIST_runFull(const STL_HWBIST_Error errorType).

Table 6. Injected Errors Expected Results For HWBIST Full Run

CPU1 CPU2
ErrorType Error

Value
Return
Status

NMI
Trap

NMIFLG ErrorType Error
Value

Return
Status

NMI
Trap

NMIFLG

NO_ERROR 0x0000 0x0003 No 0x0000 NO_ERROR 0x0000 0x0003 No 0x0000
TIMEOUT 0x000A 0x0029 Yes 0x0011 NO_ERROR 0x0000 0x0003 Yes 0x0011
FINAL_COMPARE 0x00A0 0x0003 No 0x0000 NO_ERROR 0x0000 0x0003 No 0x0000
NMI_TRAP 0x0A00 0x0005 Yes 0x0000* NO_ERROR 0x0000 0x0003 No 0x0000*
LOGIC_FAULT 0x2000 0x001B Yes 0x0011 NO_ERROR 0x0000 0x0003 Yes 0x0011
NO_ERROR 0x0000 0x0003 No 0x0000 NO_ERROR 0x0000 0x0003 No 0x0000
NO_ERROR 0x0000 0x0003 Yes 0x0021 TIMEOUT 0x000A 0x0029 Yes 0x0021
NO_ERROR 0x0000 0x0003 No 0x0000 FINAL_COMPARE 0x00A0 0x0003 No 0x0000
NO_ERROR 0x0000 0x0003 Yes 0x0000* NMI_TRAP 0x0A00 0x0005 Yes 0x0000*
NO_ERROR 0x0000 0x0003 Yes 0x0021 LOGIC_FAULT 0x2000 0x001B Yes 0x0021
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2.4 Debugging HWBIST In-System
While the HWBIST micro-run is executing, the emulation connection to the targeted CPU is, for all
practical purposes, gone from the system. This means features like breakpoint, Watch-point, Single Step,
or even run are not available for debugging the system code. This comes from the following two aspects
of the HWBIST operation:
• Like the CPU, the emulation analysis circuitry is being scanned so the breakpoint (and other emulation

analysis features) is managed by latches that are actively being corrupted by the HWBIST controller.
• The context of the analysis circuitry cannot be saved and restored.

TI recommends that users do not leave software breakpoints enabled in the code while executing the
HWBIST. For this reason, it is necessary to disable the HWBIST operations while debugging the system
code. While validating or debugging the HWBIST operations, the CPU code execution must be started
using the Free Run operation. If running a dual-core device, then both CPUs must be started using the
Free Run operation.

Some helping hints for debugging the HWBIST code follow:
• Use observable points on the board to monitor progress during execution – For example, use one or

more GPIO pins tied to a scope or tied to LEDs.
• Store debug and progression updates or statuses in the SRAM:

– Ideally, this is in a range of memory that is not initialized by either the BootROM or the Emulator
GEL script.

– Good to store these updates in a memory that both CPUs can access:
• For example, shared memory, IPC registers, or message RAM.
• The CPU that is not running the HWBIST may be able to halt cleanly and display the debug and

progression information.
• Sometimes after running the HWBIST the emulator Halt operation invokes the following pop-up

message:
Trouble Halting Target CPU: (Error -1156 @ 0x0). Device may be operating in low-power mode. Do
you want to bring it out of this mode? (Emulation package 5.1.636.0).

This message is normal and caused by the emulator losing sync with the processor. The emulator
always loses sync, but sometimes regains sync without the aid of this operation. This has nothing to do
with low-power mode.
– If this happens, click the Yes button.
– If this does not work, then the CPU can be disconnected and reconnected to regain control – It is

possible that the other CPU is accessible, therefore if debug and progression values have been
saved, then the other CPU can provide access to them.

• If the CPU comes back, but it vectors into the BootROM or flash, the most likely reason is that the PIE
is not enabled – HWBIST executes a CPU reset upon completion, but if PIE is not enabled, then the
CPU vectors to the BootROM instead of the Diagnostic Library STL_HWBIST_restoreContext() code.
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