
1SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

Application Report
SPRACS0–May 2020

Software Examples to Showcase Unique Capabilities of
TI’s C2000™ CLA

Himanshu Chaudhary and Aravindhan Karuppiah

ABSTRACT
Enabling extremely high performance computation and efficient processing is critical for solving today’s
complex real-time control problems. Real-time control systems are closed-loop control systems where one
has a tight time window to gather data, process that data, and update the system in order to meet the
performance objectives. TI’s Control Law Accelerator (CLA) is designed to execute real-time control
algorithms in parallel with the C28x CPU, effectively doubling the computational performance of C2000
devices. This application report discusses some of the unique features of CLA and demonstrates them
using simple software examples. These stand-alone examples are available as part of C2000Ware and
can be quickly used to explore and evaluate the capabilities of CLA.

Contents
1 Introduction ... 2
2 Direct Access of CLA to Key Peripherals... 2
3 Low interrupt Latency of CLA .. 4
4 Powerful Math Computation Capability of CLA .. 7
5 Offloading Fast Control Loop to CLA ... 8
6 Summary .. 13
7 References .. 14

List of Figures

1 Direct PWM Control Using CLA ... 3
2 Interrupt vs Task Driven Machine ... 4
3 Early Interrupt From ADC to Trigger CLA Task ... 5
4 CLA Pipeline Activity for Early Interrupt Pulse ... 5
5 “Just-in-time” ADC Read Example Showcase .. 6
6 Dual Control Loop Example Showcase... 8
7 Flow Diagram With Both Tasks Running on C28x .. 9
8 Profiling Waveforms for Both Tasks Running on C28x ... 9
9 Flow Diagram With Loop 1 Task Offloaded to CLA ... 10
10 Profiling Waveforms for Loop1 Task Offloaded to CLA ... 10
11 Concurrent R-M-W by C28x/CLA .. 11
12 Profiling and Output Waveforms With Phase-Shift Disabled ... 11
13 EPWM-Based Phase-Shifting Technique ... 12
14 Profiling and Output Waveforms With Phase-Shift Enabled.. 12

List of Tables

1 CLA Math and Control Library Routines .. 7

http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0
http://www.ti.com/tool/C2000WARE

Introduction www.ti.com

2 SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

Trademarks
C2000 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

1 Introduction
The CLA is a fully-programmable independent 32-bit floating-point CPU that is designed for optimal math
intensive computations to offer a significant boost to the performance of control algorithms. Unlike the
standard traditional processor which executes instructions and services interrupts, the CLA instead is a
task-driven machine and can support up to 8 user-defined tasks. The CLA in addition to providing
computational capability provides an unique combination of minimal latency and ease of access to the key
control peripherals. This makes the CLA ideal for implementing fast control loops, thus freeing up
bandwidth on C28x to run additional control loops and perform other diagnostic and communication
related tasks. The subsequent sections of this application report discusses these unique capabilities of
CLA in detail and also demonstrates them through simple software examples which are provided as part
of C2000Ware package [2]. For more details on CLA architecture and instructions set, see [1], [3].

The examples discussed in this document can be found in C2000Ware v3.01.00.00 or latest, located
within the following directories after installation:
• C:\ti\c2000\C2000Ware_<version_number>\driverlib\f28004x\examples\cla
• C:\ti\c2000\C2000Ware_<version_number>\libraries\math\CLAmath\c28\examples
• C:\ti\c2000\ C2000Ware_<version_number>\libraries\control\DCL\c28\examples

The discussed example projects are:
• cla_ex4_pwm_control
• cla_ex5_adc_just_in_time
• cla_ex6_cpu_offloading
• cla_ex7_shared_resource_handling

2 Direct Access of CLA to Key Peripherals
Most of the real-time control algorithms can be split into three main tasks: excite the system, sample the
system and control the system. Exciting the system would involve updating the PWM registers, sampling
the system involves accessing the ADC result registers while controlling the system involves control loop
math computations. CLA being an independent math processor, also has the ability to access registers of
all key peripherals used for control applications like EPWM, ADC, ECAP, EQEP, CMPSS, and so forth
directly. This allows CLA to perform sampling and actuation along with computation of control logic and is
capable of executing the entire control task independently without any C28x involvement.

The example “cla_ex4_pwm_control” showcases how to control the PWM signal output directly through
CLA. The block diagram of this example is shown in Figure 1. In this example, EPWM1 is configured to
generate complementary signals on both of its channels at a fixed frequency of 100 KHz while EPWM4 is
configured to trigger a periodic CLA control task at a frequency of 10 KHz. The CLA Task 1 implements a
very simple logic to vary the duty of the EPWM1 outputs by increasing it by 0.1 for every iteration while
maintaining it in the range of 0.1-0.9. The code sequence below illustrates how the existing C28x driverlib
APIs (available as part of C2000Ware) can be used as it is within the CLA task to update the EPWM
registers avoiding any additional software development effort with respect to CLA. The CLA task can
access key registers of other shared peripherals as well in a similar fashion. Note that the CLA global
variables cannot be initialized at the start of .cla file thus this example also illustrates a systematic way of
initializing all the CLA global variables inside a dedicated CLA task (CLA task 8), which is triggered by
C28x software at the time of initialization.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

CLA
Task

EPWM4 @ 10 KHz

EPWM1
100 KHz PWM
variable duty
signal

www.ti.com Direct Access of CLA to Key Peripherals

3SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

Figure 1. Direct PWM Control Using CLA

__attribute__((interrupt)) void Cla1Task1 (void)
{

//
// Uncomment this to debug the CLA while connected to the debugger
//
__mdebugstop();

//
// Write to the COMPA register to realize a particular duty value
//
EPWM_setCounterCompareValue(EPWM1_BASE, EPWM_COUNTER_COMPARE_A,

(uint16_t)(duty * EPWM1_PERIOD + 0.5f));

//
// Update duty value and use the limiter
//
duty += 0.1f;
duty = (duty > 0.9f) ? 0.1f : duty;

//
// Clear EPWM4 interrupt flag so that next interrupt can come in
//
EPWM_clearEventTriggerInterruptFlag(EPWM4_BASE);

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

Low interrupt Latency of CLA www.ti.com

4 SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

3 Low interrupt Latency of CLA
In any real-time control application, the sample to output delay, defined as the time that elapses between
sensing, processing and actuation, is an important system consideration. The low-latency architecture of
CLA reduces this sample to output time while increasing the overall system throughput. This is made
possible because CLA is task oriented instead of interrupt driven machine and does not use interrupts to
synchronize with hardware. Instead, it supports up to eight independent tasks, which are each mapped to
hardware events such as a timer or data availability on an ADC, and so forth. A task initiated on the CLA
runs to completion without any interruption or nesting involved, hence eliminating the need for any
context-switching overhead typically involved in traditional interrupt-based processors. Thus, there is little
to no delay involved in processing the data by CLA, which ultimately reduces the sample to output delay
and enables faster system response. Figure 2 illustrates the differences between a task driven machine
(TDM) and an interrupt driven machine (IDM).

Figure 2. Interrupt vs Task Driven Machine

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

Sampling Conversion

Pre-processing Read Processing + Update

Early

Interrupt

Pulse

³-XVW-In-7LPH´�

ADC Read

ADC
Activity

CLA
Activity

CLA Task

Begins

CLA Task

Completes

www.ti.com Low interrupt Latency of CLA

5SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

The low interrupt response of CLA can be leveraged in combination with the early-interrupt feature of TI’s
internal ADC to further reduce the sample to output delay. The ADC can be configured to generate an
early interrupt pulse at the end of sampling before the conversion completes. This early-interrupt pulse
from the ADC can be used to trigger a CLA task that would allow the CLA to read the result as soon as
the conversion result is available in the ADC result register. This combination of just-in-time sampling
along with the low interrupt response of the CLA enable faster system response and higher frequency
control loops. The available time before the conversion can be effectively utilized for any necessary pre-
processing steps within the CLA task as illustrated in Figure 3. The exact instruction at which the read
request should be placed to achieve just-in-time read can be calculated based on the CLA pipeline activity
for N-cycle ADC conversion. As shown in Figure 4, The N-2 instruction will arrive in the R2 phase just in
time to read the result register. For the standard 12-bit ADC configuration and clock divider as 4, N is 42.
To find out the correct value of N based on the configuration of ADC, see the device-specific data sheet
[4].

Figure 3. Early Interrupt From ADC to Trigger CLA Task

Figure 4. CLA Pipeline Activity for Early Interrupt Pulse

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

CLA

EPWM1 @ 1 MHz

EPWM1
Linear
Mapping

CLA Task
(Just-in-time

Read +
Processing)

Early
Interrupt

Low interrupt Latency of CLA www.ti.com

6 SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

The example “cla_ex5_adc_just_in_time” utilizes the above concept to read the ADC data “just-in-time”
even at very high sampling frequencies. As depicted in Figure 5, EPWM1 is configured to generate a
PWM output signal of frequency 1 MHz, which is also used to trigger the ADC sampling at each cycle. The
example also utilizes the newly added feature in TI’s Type 5 ADCs, which allows delaying the early
interrupt pulse by few cycles as per the programmed OFFSET value. Thus ADCA is configured to sample
the input on Channel 0 and to generate the early interrupt at the end of S/H + offset cycles. This interrupt
is used to trigger the CLA control task. The CLA task implements the control logic to update the duty of
the PWM output based on the read ADC value. The early interrupt feature and low interrupt latency of
CLA allows the application to do any necessary pre-work so that the application can act on the ADC
results immediately when they become available and still complete updating the PWM output before the
next interrupts arrives. Thus, all the three steps (sampling, processing and actuation) are completed within
a 1 MHz cycle. As shown in the below code snippet of the CLA task, 3-point moving average filter is used
to simulate the processing sequence for illustration purposes and few steps of the filtering sequence that
are denoted as the pre-processing code are implemented before reading the ADC result to make use of
the time available before conversion.

Figure 5. “Just-in-time” ADC Read Example Showcase

//
// Pre-processing for implementing moving average filter, takes 13 cycles
// This is just to illustrate how cycles can be utilized to do some pre-
// processing before ADC result latches. Based on the cycles taken by
// pre-processing code, ADC interrupt offset need to be programmed
//
data_read_total = data_read + data_read_prev;
data_read_prev2 = data_read_prev;
data_read_prev = data_read;

//
// Reading ADC just-in-time
//
data_read = HWREGH(ADCARESULT_BASE + ADC_RESULTx_OFFSET_BASE + ADC_SOC_NUMBER0);

//
// "data_read_total" stores the cumulative sum of current and last 2 data elements
//
data_read_total += data_read;

//
// Taking average of 3 elements, normalizing for 12-bit and mapping to output duty
// linearly in the range 0.1-0.9
// duty = 0.1 + (0.9-0.1) * ((data_read_total / 3) / 2^12)
//
duty = 0.1f + (data_read_total / (15360.0f));

//
// Writing to the COMPA register for realizing computed duty value
//
HWREGH(EPWM1_BASE + EPWM_O_CMPA + 0x1U) = (uint16_t)(duty * EPWM1_PERIOD + 0.5f);

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

www.ti.com Powerful Math Computation Capability of CLA

7SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

The early interrupt OFFSET value of ADC need to be adjusted based on the cycles consumed by the pre-
processing in order to read the ADC data “just-in-time”. In this example, the OFFSET value of 20 is used
based on the calculation shown in example header. The programming sequence for this configuration of
ADC is shown below. The actual use-case may involve different pre-processing steps, hence the interrupt
OFFSET value need to programmed accordingly.

//
// Set pulse positions to early
//
ADC_setInterruptPulseMode(ADCA_BASE, ADC_PULSE_END_OF_ACQ_WIN);

//
// Set interrupt offset delay as 20 cycles based on the calculation
// shown in example header
//
ADC_setInterruptCycleOffset(ADCA_BASE, 20);

4 Powerful Math Computation Capability of CLA
CLA also offers powerful 32-bit floating point processing capability to C2000 devices and provides a
significant boost to the performance of typical math functions that are commonly used in control
algorithms. The powerful CLA instruction set supports floating point multiplication with parallel add or
subtract operations in a single cycle and also supports computation of inverse square root in a single cycle
too. For the ease of software development with CLA, a wide collection of commonly used floating-point
math functions (a few of them are listed in Table 1) are packaged into a single library called as CLA Math,
which is available as part of C2000Ware. This source code library includes several C callable assembly
math functions optimally written for CLA architecture.

In addition to the basic math routines, TI also provides Digital Control library (DCL available as part of
C2000Ware) that includes optimal implementation of standard control routines on CLA CPU, few of them
are listed in Table 1. These C callable assembly control routines can be called within a CLA application
task to realize digital controller on CLA CPU. Along with the library source code, examples are provided to
show the user how to integrate the library into their projects and use any of the math or control routines.
These examples can be found in the example directories indicated in the introduction section that can be
used to explore and evaluate the compute capability of CLA.

Table 1. CLA Math and Control Library Routines

Library Routine Description Cycles
CLA Math CLAcos Calculates cosine on CLA 28

CLAsin Calculates sine on CLA 28
CLAacos Calculates arc-cos on CLA 24
CLAasin Calculates arc-sine on CLA 22
CLAatan Calculates arc-tan on CLA 41
CLAlog10 Calculates Log (base10) on CLA 29
CLAexp Calculates exponential on CLA 41
CLAdiv Calculates floating-point division on CLA 13

CLAisqrt Calculates inverse square root on CLA 14
CLAsqrt Calculates square root on CLA 16

DCL DCL_runPID_L1 Runs Ideal Form PID controller on CLA 53
DCL_runPID_L2 Runs Parallel Form PID controller on CLA 45
DCL_runPI_L1 Runs Ideal Form PI controller on CLA 34

DCL_runDF13_L1 Runs the DF13 Full Compensator on CLA 61
DCL_runDF13_L2 Runs the DF13 Immediate Compensator on CLA 20
DCL_runDF13_L3 Runs the DF13 Partial Compensator on CLA 58

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

EPWM5 @ 20 KHz

ADCB

SOC0

SOC1

SOC2

SOC3

V2

CLA

SOC0

SOC1

SOC2

SOC3

EPWM4 @ 200 KHz

V1
Loop1
DCL_PI

Controller

Loop2
DCL_PI

Controller

EPWM1
V1_ref

V2 _ref

0.8

0.2

PWM
+

Offloading Fast Control Loop to CLA www.ti.com

8 SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

5 Offloading Fast Control Loop to CLA
Various real-time control applications involve implementation of multiple control loops on a single device.
However integration of multiple control systems on a single controller remains challenging from a
processor bandwidth point of view while keeping system costs down. The CLA is a fully parallel processor
to the main C28x core that brings concurrent control-loop execution to the C28x family. The CLA has its
own program and data bus, and executes independently of the main core on the MCU. As described in
Section 2 and Section 3, CLA provides unique combination of minimal latency and ease of access to the
key control peripherals, which enables CLA to offload the fast control algorithm task entirely from C28x.
Offloading the control task to CLA also offers additional benefits such as reduced jitter in execution and
deterministic operation of control loops. This is made possible because the CLA is task oriented instead of
an interrupt service driven machine and the tasks on CLA cannot be interrupted guaranteeing the
deterministic nature of control loops. In a pipelined CPU, the ISRs can be delayed by an “n” number of
cycles if the CPU is executing branch type statements when the ISR is received. However this is not a
problem with CLA CPU as it waits in an idle state till the periodic task triggers to begin any execution due
to its task-driven nature. Therefore, offloading fast control task to CLA and running remaining tasks on
C28x helps to improve the overall system performance with reduced jitter in execution.

The example “cla_ex6_cpu_offloading” illustrates how to optimally offload a control loop from C28x to CLA
when multiple control tasks and background tasks are involved which require more than single CPU
(C28x) bandwidth. Figure 6 shows that two control loops are simulated in this example. The faster one
(loop1) runs at 200 KHz while the slower one (loop2) runs at 20 KHz. Both the loops make use of PI
controller to control the duty of single PWM output with different weightage, the faster one contribution
being 80% while the slower one contributes 20% to the PWM output. The inputs for both the loops are
sampled using ADCA and ADCB with multiple SOCs for each to filter out any noise in the inputs. There is
also a background task continuously running in the main loop that disables or enables the entire system
including the PWM output and the control loops based on the user configured switch "system_OFF". Note
that the CCS debugger clock cannot be used for profiling CLA routines, hence GPIO based profiling
technique is employed in this example to profile the both tasks. GPIO2 and GPIO 3 have been used for
this purpose.

Figure 7 depicts the flow diagram of both the control tasks when everything runs on C28x without the use
of CLA. In this case, the total CPU (C28x) utilization exceeds the schedulable Utilization bound (UB) and,
hence the system is schedulable in this scenario. This can also be further substantiated by observing the
profiling waveforms shown in Figure 8. Note that there is no toggling observed on GPIO3, which clearly
suggests that the lower priority Loop 2 task never gets chance to complete and neither the background
task.

Figure 6. Dual Control Loop Example Showcase

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

lective Disclosure

C ISR

Save Context and

clear interrupt flags

Read Channel 0 ADC

oversampled data

Run PI Controller

Duty Computation

with 80% weightage

EPWM1A Register

Update

EXIT

Loop1 @ 200 KHz Loop2 @ 20 KHz

Context Restore

C ISR

Save Context and

clear interrupt flags

Read Channel 1 ADC

oversampled data

Run PI Controller

Duty Computation

with 20% weightage

EPWM1A Register

Update

EXIT

Context Restore

Turn ON GPIO2

Turn OFF GPIO2

Turn ON GPIO3

Turn OFF GPIO3

CPU
Utilization

: ~77%

CPU
Utilization
: ~7.7%

www.ti.com Offloading Fast Control Loop to CLA

9SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

Figure 7. Flow Diagram With Both Tasks Running on C28x

Figure 8. Profiling Waveforms for Both Tasks Running on C28x

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

Selective Disclosure

CLA

Task

Read Channel 0 ADC

oversampled data

Run PI Controller

Duty Computation

with 80% weightage

EPWM1A Register

Update

EXIT

Loop1 @ 200 KHz

Loop2 @ 20 KHz

C ISR

Save Context and

clear interrupt flags

Read Channel 1 ADC

oversampled data

Run PI Controller

Duty Computation

with 20% weightage

EPWM1A Register

Update

EXIT

Context Restore

Turn ON GPIO2

Turn OFF GPIO2

Turn ON GPIO3

Turn OFF GPIO3

CLA
Utilization
: ~72.4%

CPU
Utilization
: ~7.7%

Offloading Fast Control Loop to CLA www.ti.com

10 SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

Since the system is non-schedulable with C28x, one of the control tasks can be offloaded to CLA in order
to meet the system requirements. As CLA offers very low interrupt latency, it is better to offload the fast
control task to CLA, and this will also free up maximum bandwidth on C28x, which can be utilized for
executing background and other system tasks. Figure 9 depicts the flow diagrams of both the tasks when
the higher frequency Loop 1 task is offloaded to CLA. With the use of CLA for concurrent loop execution,
the C28x utilization for control tasks has come down to approximately 7.7% allowing the other background
task to execute correctly. Offloading the task to CLA makes the system perfectly schedulable in this case,
which is also evident from the profiling waveforms shown in Figure 10. The example allows the user to
offload the loop1 task quickly & conveniently from C28x to CLA by just updating the pre-defined symbol
"run_loop1_cla" to 1 in the project build options.

Figure 9. Flow Diagram With Loop 1 Task Offloaded to CLA

Figure 10. Profiling Waveforms for Loop1 Task Offloaded to CLA

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

CPU
ISR

CLA
Task

EPWM4

@10Khz

EPWM5

@100Khz

EPWM1B Toggle

via SW Force

EPWM1A Toggle
via SW Force

www.ti.com Offloading Fast Control Loop to CLA

11SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

5.1 Handling Shared Resources Across C28x/CLA
CLA allows offloading of control tasks efficiently from C28x and enables concurrent control loop execution
on C2000 devices with many other additional benefits as discussed in earlier sections. But it is important
to note that the peripherals are still shared between them and concurrent read-modify-write to the shared
registers can lead to data race conditions ultimately leading to data violation or incorrect functionality.
Ideally it’s best to avoid any concurrent updates to the same peripheral by both CLA and C28x during run
time but in case it is unavoidable, conflicts for shared resources must be handled carefully. The example
“cla_ex7_shared_resource_handling” illustrates one such instance where both C28x and CLA do
concurrent read-modify-write to same (AQCSFRC) register independently at different frequencies, which
leads to a race condition between C28x and CLA and creates a possibility where updates due to one of
them can get lost or overwritten. This is a standard critical section problem and can be handled using
software handshaking mechanism like mutual exclusion but most of the real-time control applications are
time-sensitive and cannot afford additional software cycles overhead. This example suggests an
alternative hardware based technique to schedule the CLA and C28x tasks smartly in order to avoid
overlapping access of shared resources. The hardware-based scheduling technique makes use of the
programmable phase shifting mechanism of the EPWM modules.

As depicted in Figure 11, C28x ISR and CLA task runs independently at 10 KHz and 100 KHz
respectively. C28x ISR gets periodically triggered by EPWM4, and toggles the EPWM1B output via
software by controlling CSFB bits of AQCSFRC. CLA task gets triggered by EPWM5 and toggles the
EPWM1A output via software by controlling CSFA bits of AQCSFRC (refer to device TRM [1] for further
details about this register). Thus in this process both C28x and CLA do overlapping read-modify-write to
AQCSFRC register as can be observed form the profiling waveforms shown in Figure 12. As a result, the
updates to the AQCSFRC due to CLA gets overwritten, which is very evident from the spikes observed in
EPWM1A output waveform shown in Figure 12.

Figure 11. Concurrent R-M-W by C28x/CLA

Figure 12. Profiling and Output Waveforms With Phase-Shift Disabled

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

CLA
Trigger

CLA
Trigger

CLA
Trigger

CLA
Trigger

CLA
Trigger

CLA
Trigger

CLA
Trigger

CLA
Trigger

CLA
Trigger

CLA
Trigger

C28x
Trigger

Trigger
Delay

EPWM5

Time

Base

EPWM4

Time

Base

Offloading Fast Control Loop to CLA www.ti.com

12 SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

The phase shifting mechanism of the EPWM modules, as shown in Figure 13, is utilized to schedule the
CLA task and C28x ISR efficiently in order to resolve the above issue. EPWM4 generates a synchronous
pulse every ZERO event and provides a phase shift of 20 cycles to EPWM5. This way both CLA task and
C28x ISR runs at the original frequencies (100 KHz and 10 KHz), but CLA task leads with a phase offset
of 20 cycles w.r.t C28x ISR as can be observed from the profiling waveform shown in Figure 14.
Concurrent read-modify-writes to AQCSFRC never happens and the EPWM1A and EPWM1B outputs
behave as desired without any distortion as shown in Figure 14. Thus the proposed hardware based
scheduling technique helps to avoid data race conditions between C28x and CLA, and also helps to
realize the true parallel execution of both processing engines by avoiding any simultaneous accesses and,
hence maximizes the overall device performance.

Figure 13. EPWM-Based Phase-Shifting Technique

Figure 14. Profiling and Output Waveforms With Phase-Shift Enabled

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

www.ti.com Summary

13SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

6 Summary
The differentiation provided by TI’s Control Law Accelerator (CLA) enables efficient execution of
concurrent control loops on C2000 devices. CLA has been specially designed to boost the performance of
control intensive math routines on real-time MCUs. The low-latency task-driven architecture of CLA is
quite unique and reduces the sample-to-output delay, which is very critical for control applications. The
direct access to key control peripherals and powerful floating-point processing capability allows CLA to
offload the control tasks completely from the main CPU (C28x) thus freeing up its bandwidth to perform
other system tasks. The CLA offers additional processing capabilities to C2000 devices and increases the
overall device performance. The phase-shifting mechanism for scheduling CLA tasks as discussed in this
report can be used to extract the maximum processing bandwidth out of the device. Another key benefit of
the CLA over hardware-based control law implementations is flexibility. The CLA is fully programmable
where developers can freely modify their control system without the time and high cost required to
redesign a hardware-based solution. The C2000 C compiler [5] allows CLA to be programmed in C
language similar to the C28x, which makes it very convenient to port existing algorithms or develop newer
ones on CLA. The various software examples discussed in this application report demonstrates the key
capabilities of CLA and can be used as a reference to adopt these unique features of CLA in their
applications. These examples are very easy to use and do not require any special hardware platform other
than the standard TI ControlCard to explore and evaluate the performance of CLA. Along with these
examples, various Digital Power SDK [6] solutions also showcase the usage of CLA to reduce the overall
C28x burden in various digital power solutions [7]. For further details on the software development and
debugging with CLA, see [8].

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0

References www.ti.com

14 SPRACS0–May 2020
Submit Documentation Feedback

Copyright © 2020, Texas Instruments Incorporated

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA

7 References
1. Texas Instruments: TMS320F28004x Microcontrollers Technical Reference Manual
2. C2000Ware for C2000 MCUs
3. CLA Hands-On Workshop
4. Texas Instruments: TMS320F2838x Microcontrollers With Connectivity Manager Data Sheet
5. CLA C Compiler
6. Digital Power SDK for C2000 MCUs
7. CLA Usage in Valley Switching Boost Power Factor Correction (PFC) Reference Design
8. C2000™ CLA Software Development Guide

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0
http://www.ti.com/lit/pdf/SPRUI33
http://www.ti.com/tool/C2000WARE
https://training.ti.com/control-law-accelerator-cla-hands-workshop
http://www.ti.com/lit/pdf/SPRSP14
https://training.ti.com/c2000-cla-c-compiler-part-1-technical-overview
http://www.ti.com/tool/C2000WARE-DIGITALPOWER-SDK
https://training.ti.com/cla-usage-valley-switching-boost-power-factor-correction-pfc-reference-design
https://software-dl.ti.com/C2000/docs/cla_software_dev_guide/getting_started.html

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Software Examples to Showcase Unique Capabilities of TI’s C2000 CLA
	1 Introduction
	2 Direct Access of CLA to Key Peripherals
	3 Low interrupt Latency of CLA
	4 Powerful Math Computation Capability of CLA
	5 Offloading Fast Control Loop to CLA
	5.1 Handling Shared Resources Across C28x/CLA

	6 Summary
	7 References

	Important Notice

