How to Load TPS2388x SRAM and Parity Code Over I²C

Penny Xu, Power over Ethernet(PoE) Products

The TPS2388x is an 8-channel power sourcing equipment (PSE) controller engineered to insert power onto Ethernet cables in accordance with the IEEE 802.3bt standard. Programmable SRAM enables the in-field firmware upgradability over I²C. This ensures maximum interoperability with the latest PoE enabled devices.

Before sending commands to the TPS2388x, the first thing after power up is to load the SRAM and Parity code. Here are the instructions on how to load it.

If there is more than one TPS2388x device in the system, a global I²C write may be used to load the SRAM and parity code to multiple devices through the global I²C address 0x7F.

The SRAM and parity programming needs to be delayed at least *50 ms* from the initial power on (VPWR and VDD above UVLO) of the device to allow for the device to complete its internal hardware initialization process.

The below procedure applies for either 8-bit (configuration A) or 16-bit (configuration B) I²C operation. The SRAM and parity programming control must be completed at the lower I²C address (Channels 1-4). Configuring SRAM control registers for the upper I²C device address (Channels 5-8) does not program the SRAM or parity.

The latest version of TPS2388x firmware can be accessed from the *TI mySecure Software* webpage.

Table 1. SRAM and Parity Programming Steps During Power Up

	Command	Register	Data	Comments	If Parity Disabled		
Step 1	Write	0x60	0x01	Reset the memory address pointer			
Step 2	Write	0x62	0x00	Set start address LSB			
Step 3	Write	0x63	0x80	Set start address MSB			
Step 4	Write	0x60	0xC4	Reset CPU and enable Parity Write	Skip		
Step 5	Write	0x61	xx,xx,xx,	Load Parity data	Skip		
After all data is written:							
Step 6	Write	0x60	0xC5	Keep CPU in reset and reset memory pointer	Skip		
Step 7	Write	0x62	0x00	Re-Set LSB of start address	Skip		
Step 8	Write	0x63	0x80	Re-Set MSB of start address	Skip		
Step 9	Write	0x60	0xC0	Keep CPU in reset and enable SRAM I ² C write			
Step 10	Write	0x61	xx,xx,xx,	Load SRAM data			
Step 11	Write	0x60	0x18	Clears CPU reset and enables SRAM and Parity	Write '0x08' instead		
Step 12	Delay for approximately 12 ms						
Step 13	Read	0x41		Check firmware version			

Here are the instructions to reload the SRAM and parity code when the device is in safe mode.

Table 2. SRAM and Parity Programming In Safe Mode

	Command	Register	Data	Comments	If Parity Disabled		
Step 1	Write	0x60	0x01	Reset the memory address pointer			
Step 2	Write	0x62	0x00	Set start address LSB			
Step 3	Write	0x63	0x80	Set start address MSB			
Step 4	Write	0x60	0x84	Enable Parity write	Skip		
Step 5	Write	0x61	xx,xx,xx,	Load Parity data	Skip		
After all dat	a is written:		•				
Step 6	Write	0x60	0x85	Reset memory pointer	Skip		
Step 7	Write	0x62	0x00	Re-Set LSB of start address	Skip		
Step 8	Write	0x63	0x80	Re-Set MSB of start address	Skip		
Step 9	Write	0x60	0x80	Enable SRAM I ² C write			
Step 10	Write	0x61	xx, xx, xx,	Load SRAM data			
Step 11	Write	0x60	0x18	Enables SRAM and Parity	Write '0x08' instead		
Step 12	Delay for approximately 12 ms						
Step 13	Read	0x41		Check firmware version			

Related Documentation

- Texas Instruments, TPS23880 High-Power, 8-Channel, Power-over-Ethernet PSE with Programmable SRAM Data Sheet
- Texas Instruments, TPS23880EVM-008 User's Guide
- Texas Instruments, TPS23880 Product Folder
- Texas Instruments, TPS23881 High-power, 8channel, power-over-ethernet PSE with 200-mΩ RSENSE Data Sheet
- Texas Instruments, TPS23881EVM-008 User's Guide
- Texas Instruments, TPS23881 Product Folder
- Texas Instruments, TPS23882 Type-3 2-Pair 8-Channel PoE PSE Controller with SRAM and 200 mΩ RSENSE Data Sheet
- Texas Instruments, TPS23882EVM-008 User's Guide
- Texas Instruments, TPS23882 Product Folder

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated