
- Qualified for Military Applications
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Triple Supervisory Circuits for DSP and Processor-Based Systems
- Power-On Reset Generator with Fixed Delay Time of 200 ms, No External Capacitor Needed
- Temperature-Compensated Voltage Reference
- Maximum Supply Current of 40 μA
- Supply Voltage Range . . . 2 V to 6 V
- Defined RESET Output from V<sub>DD</sub> ≥ 1.1 V
- CDIP-8 and LCCC-20 Packages
- Temperature Range . . . –55°C to 125°C

## typical applications

Figure 1 lists some of the typical applications for the TPS3307 family, and a schematic diagram for a processor-based system application. This application uses TI part numbers TPS3307–18 and SMJ320C6201B.





- Military applications using DSPs, Microcontrollers or Microprocessors
- Industrial Equipment
- Programmable Controls

Figure 1. Applications Using the TPS3307-18

### description

The TPS3307-18 is a micropower supply voltage supervisor designed for circuit initialization primarily in automotive DSP and processor-based systems, which require more than one supply voltage.

The TPS3307-18 is designed for monitoring three independent supply voltages: 3.3 V/1.8 V/adj,. The adjustable SENSE input allows the monitoring of any supply voltage >1.25 V.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SGLS133A - JANUARY 2003 - REVISED DECEMBER 2003

### description (continued)

The various supply voltage supervisors are designed to monitor the nominal supply voltage as shown in the following supply voltage monitoring table.

### SUPPLY VOLTAGE MONITORING

| DE\//OF    | NOMINA | AL SUPERVISED | VOLTAGE | THRESHOLD VOLTAGE (TYP) |        |                     |  |  |
|------------|--------|---------------|---------|-------------------------|--------|---------------------|--|--|
| DEVICE     | SENSE1 | SENSE2        | SENSE3  | SENSE1                  | SENSE2 | SENSE3              |  |  |
| TPS3307-18 | 3.3 V  | 3.3 V 1.8 V   |         | 2.93 V                  | 1.68 V | 1.25 V <sup>†</sup> |  |  |

<sup>†</sup> The actual sense voltage has to be adjusted by an external resistor divider according to the application requirements.

During power-on,  $\overline{RESET}$  is asserted when the supply voltage  $V_{DD}$  becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors the SENSEn inputs and keeps  $\overline{RESET}$  active as long as SENSEn remain below the threshold voltage  $V_{IT+}$ .

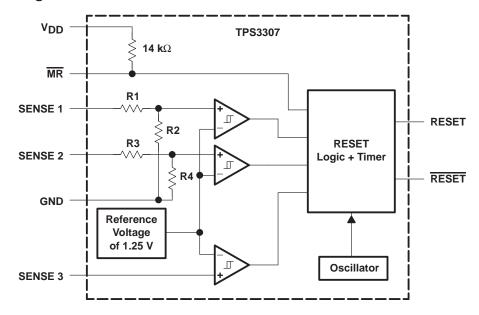
An internal timer delays the return of the  $\overline{\text{RESET}}$  output to the inactive state (high) to ensure proper system reset. The delay time,  $t_{d\,typ}$  = 200 ms, starts after all SENSEn inputs have risen above the threshold voltage  $V_{IT+}$ . When the voltage at any SENSE input drops below the threshold voltage  $V_{IT-}$ , the  $\overline{\text{RESET}}$  output becomes active (low) again.

The TPS3307-18 incorporates a manual reset input,  $\overline{MR}$ . A low level at  $\overline{MR}$  causes  $\overline{RESET}$  to become active. In addition to the active-low  $\overline{RESET}$  output, the TPS3307-18 includes an active-high RESET output.

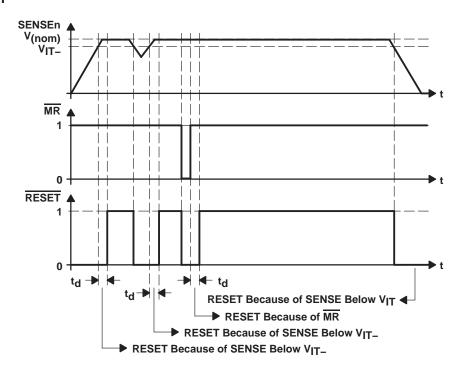
### **ORDERING INFORMATION**

| TA             | PACKAGE <sup>‡</sup>               | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |  |
|----------------|------------------------------------|--------------------------|---------------------|--|
| 5500 1- 40500  | Ceramic Dual In Line (JG)          | TPS3307-18MJGB           | TPS3307-18MJGB      |  |
| −55°C to 125°C | Leadless Ceramic Chip Carrier (FK) | TPS3307-18MFKB           | TPS3307-18MFKB      |  |

<sup>‡</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


### **FUNCTION/TRUTH TABLES**

| MR | SENSE1>VIT1 | SENSE2>V <sub>IT2</sub> | SENSE3>V <sub>IT3</sub> | RESET | RESET |
|----|-------------|-------------------------|-------------------------|-------|-------|
| L  | X           | X                       | X                       | L     | Н     |
| Н  | 0           | 0                       | 0                       | L     | Н     |
| Н  | 0           | 0                       | 1                       | L     | Н     |
| Н  | 0           | 1                       | 0                       | L     | Н     |
| Н  | 0           | 1                       | 1                       | L     | Н     |
| Н  | 1           | 0                       | 0                       | L     | Н     |
| Н  | 1           | 0                       | 1                       | L     | Н     |
| Н  | 1           | 1                       | 0                       | L     | Н     |
| Н  | 1           | 1                       | 1                       | Н     | L     |


X = Don't care



## functional block diagram



## timing diagram



SGLS133A – JANUARY 2003 – REVISED DECEMBER 2003

## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage, V <sub>DD</sub> (see Note1)                    |                              |
|----------------------------------------------------------------|------------------------------|
| All other pins (see Note 1)                                    | 0.3 V to 7 V                 |
| Maximum low output current, I <sub>OL</sub>                    | 5 mA                         |
|                                                                | –5 mA                        |
| Input clamp current, $I_{IK}$ ( $V_I < 0$ or $V_I > V_{DD}$ )  | ±20 mA                       |
| Output clamp current, $I_{OK}$ ( $V_O < 0$ or $V_O > V_{DD}$ ) | ±20 mA                       |
| Continuous total power dissipation                             | See Dissipation Rating Table |
| Operating free-air temperature range, T <sub>A</sub>           | –55°C to 125°C               |
| Storage temperature range, T <sub>stq</sub>                    | 65°C to 150°C                |
| Soldering temperature                                          | 260°C                        |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND. For reliable operation the device must not be operated at 7 V for more than t = 1000 h continuously.

### **DISSIPATION RATING TABLE**

| PACKAGE | $T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING | DERATING FACTOR<br>ABOVE T <sub>A</sub> = 25°C | T <sub>A</sub> = 70°C<br>POWER RATING | T <sub>A</sub> = 85°C<br>POWER RATING | T <sub>A</sub> = 125°C<br>POWER RATING |
|---------|----------------------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| JG      | 1 W                                                | 6.25 mW/°C                                     | 719 mW                                | 625 mW                                | 375 mW                                 |
| FK      | 1.39 W                                             | 11.58 mW/°C                                    | 869 mW                                | 695 mW                                | 232 mW                                 |

## recommended operating conditions at specified temperature range

|                                                  | MIN                 | MAX                                          | UNIT |
|--------------------------------------------------|---------------------|----------------------------------------------|------|
| Supply voltage, V <sub>DD</sub>                  | 2                   | 6                                            | V    |
| Input voltage at MR and SENSE3, VI               | 0                   | V <sub>DD</sub> +0.3                         | V    |
| Input voltage at SENSE1 and SENSE2, VI           | 0                   | (V <sub>DD</sub> +0.3)V <sub>IT</sub> /1.25V | V    |
| High-level input voltage at MR, VIH              | 0.7xV <sub>DD</sub> |                                              | V    |
| Low-level input voltage at MR, V <sub>IL</sub>   |                     | 0.3×V <sub>DD</sub>                          | V    |
| Input transition rise and fall rate at MR, Δt/ΔV |                     | 50                                           | ns/V |
| Operating free-air temperature range, TA         | -55                 | 125                                          | °C   |



## **TPS3307-18M** TRIPLE PROCESSOR SUPERVISORS

SGLS133A – JANUARY 2003 – REVISED DECEMBER 2003

## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                                | PARAMETER                                                | TEST CON | DITIONS                             | MIN                      | TYP                    | MAX  | UNIT |      |
|--------------------------------|----------------------------------------------------------|----------|-------------------------------------|--------------------------|------------------------|------|------|------|
|                                |                                                          |          | $V_{DD} = 2 V \text{ to } 6 V$ ,    | I <sub>OH</sub> = -20 μA | V <sub>DD</sub> - 0.2V |      |      |      |
| VOH                            | High-level output voltage                                |          | $V_{DD} = 3.3 V$ ,                  | $I_{OH} = -2 \text{ mA}$ | V <sub>DD</sub> - 0.4V |      |      | V    |
|                                |                                                          |          | V <sub>DD</sub> = 6 V,              | $I_{OH} = -3 \text{ mA}$ | V <sub>DD</sub> - 0.4V |      |      |      |
|                                |                                                          |          | $V_{DD} = 2 V \text{ to } 6 V,$     | $I_{OL} = 20 \mu A$      |                        |      | 0.2  |      |
| VOL                            | Low-level output voltage                                 |          | $V_{DD} = 3.3 V$ ,                  | $I_{OL} = 2 \text{ mA}$  |                        |      | 0.4  | V    |
|                                |                                                          |          | $V_{DD} = 6 V$ ,                    | $I_{OL} = 3 \text{ mA}$  |                        |      | 0.4  |      |
|                                | Power-up reset voltage (see Note 2)                      |          | $V_{DD} \ge 1.1 V$ ,                | $I_{OL} = 20 \mu A$      |                        |      | 0.4  | V    |
|                                | VSE                                                      |          |                                     |                          | 1.22                   | 1.25 | 1.29 | V    |
| V <sub>IT</sub> _              | /IT- Negative-going input threshold voltage (see Note 3) | VSENSE2  | V <sub>DD</sub> = 2 V to 6 V        |                          | 1.64                   | 1.68 | 1.73 | V    |
|                                | (See Note 3)                                             |          |                                     |                          | 2.86                   | 2.93 | 3.02 | V    |
|                                |                                                          |          | V <sub>IT</sub> _ = 1.25 V          |                          | 2                      | 10   | 30   |      |
| V <sub>hys</sub>               | Hysteresis at VSENSEn input                              |          | V <sub>IT</sub> _ = 1.68 V          |                          | 2                      | 15   | 40   | mV   |
|                                |                                                          |          | V <sub>IT</sub> _ = 2.93 V          |                          | 3                      | 30   | 60   |      |
|                                |                                                          | MR       | $\overline{MR} = 0.7 \times V_{DD}$ | $V_{DD} = 6 V$           |                        | -130 | -180 |      |
| ١.                             | LPak lavel Separt someon                                 | SENSE1   | VSENSE1 = V <sub>DD</sub>           | = 6 V                    |                        | 5    | 8    | μΑ   |
| lΗ                             | High-level input current                                 | SENSE2   | VSENSE2 = V <sub>DD</sub>           | = 6 V                    |                        | 6    | 9    |      |
|                                |                                                          |          | VSENSE3 = V <sub>DD</sub>           |                          | -25                    |      | 25   | nA   |
|                                | I <sub>L</sub> Low-level input current MR SEN            |          | $\overline{MR} = 0 \text{ V},$      | V <sub>DD</sub> = 6 V    |                        | -430 | -600 |      |
| ΙL                             |                                                          |          | VSENSE1,2,3 = 0 V                   |                          | -1                     |      | 1    | 1 μA |
| I <sub>DD</sub> Supply current |                                                          |          |                                     |                          |                        |      | 40   | μΑ   |
| Ci                             | Input capacitance                                        |          | $V_I = 0 V \text{ to } V_{DD}$      |                          |                        | 10   |      | pF   |

NOTES: 2. The lowest supply voltage at which RESET becomes active. t<sub>Γ</sub>, V<sub>DD</sub> ≥ 15 μs/V
 3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic 0.1 μF) should be placed close to the supply terminals.

# TPS3307-18M TRIPLE PROCESSOR SUPERVISORS

SGLS133A – JANUARY 2003 – REVISED DECEMBER 2003

# timing requirements at $\rm V_{DD}$ = 2 V to 6 V, $\rm R_{L}$ = 1 M $\Omega,\, C_{L}$ = 50 pF, $\rm T_{A}$ = 25°C

|                | PARAMET     | ER     | TEST                         | MIN                          | TYP | MAX | UNIT |    |
|----------------|-------------|--------|------------------------------|------------------------------|-----|-----|------|----|
| _              | Dulas width | SENSEn | VSENSEnL = VIT0.2 V,         | VSENSEnH = VIT+ +0.2 V       | 6   | 10  |      | μs |
| I <sub>W</sub> | Pulse width | MR     | $V_{IH} = 0.7 \times V_{DD}$ | $V_{IL} = 0.3 \times V_{DD}$ | 100 | 150 |      | ns |

# switching characteristics at V\_DD = 2 V to 6 V, R $_L$ = 1 M $\Omega,$ C $_L$ = 50 pF, T $_A$ = 25 $^{\circ}$ C

|                  | PARAMETER                                                                                                      |                                                 | TEST CONDITIONS                                                                                                           | MIN | TYP | MAX | UNIT |
|------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| t <sub>d</sub>   | Delay time                                                                                                     |                                                 | $\frac{V_{I}(\text{SENSEn}) \geq V_{IT+} + 0.2 \text{ V},}{\text{MR}} \geq 0.7 \times V_{DD}, \text{ See timing diagram}$ | 140 | 200 | 280 | ms   |
| <sup>t</sup> PHL | Propagation (delay) time,<br>high-to-low level output<br>Propagation (delay) time,<br>low-to-high level output | MR to RESET MR to RESET MR to RESET MR to RESET | $V_{I(SENSEn)} \ge V_{IT+} + 0.2 \text{ V},$<br>$V_{IH} = 0.7 \times V_{DD},  V_{IL} = 0.3 \times V_{DD}$                 |     | 200 | 600 | ns   |
| tPHL             | Propagation (delay) time,<br>high-to-low level output                                                          | SENSEn to RESET                                 | V <sub>IH</sub> = V <sub>IT+</sub> +0.2 V, V <sub>IL</sub> = V <sub>IT-</sub> -0.2 V,                                     |     | _   | _   |      |
| tPLH             | Propagation (delay) time, low-to-high level output                                                             | SENSEn to RESET                                 | $\overline{MR} \ge 0.7 \times V_{DD}$                                                                                     |     | 1   | 5   | μS   |

**SUPPLY CURRENT** 

### TYPICAL CHARACTERISTICS

## NORMALIZED SENSE THRESHOLD VOLTAGE

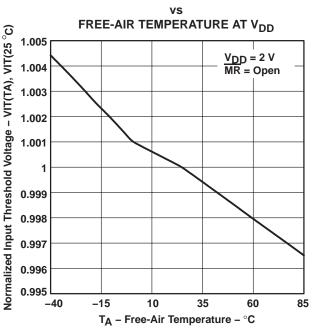



Figure 2

# **INPUT CURRENT**

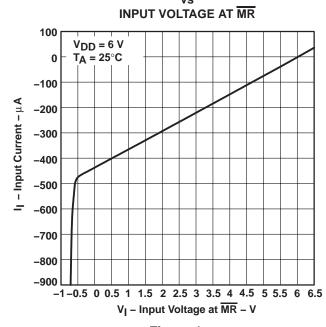
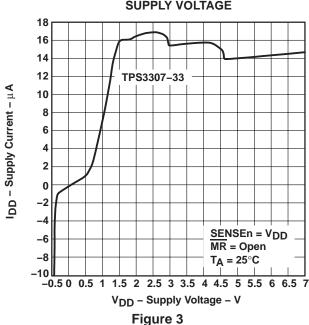



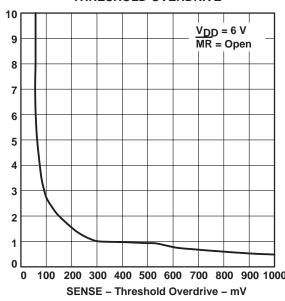
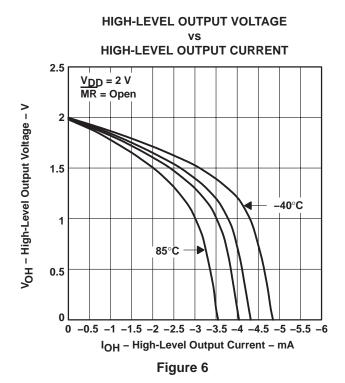
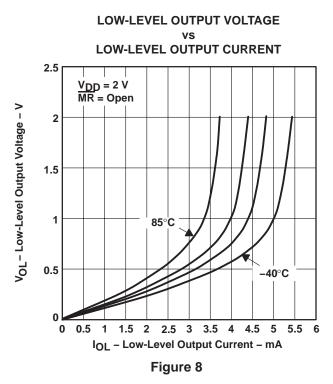

Figure 4

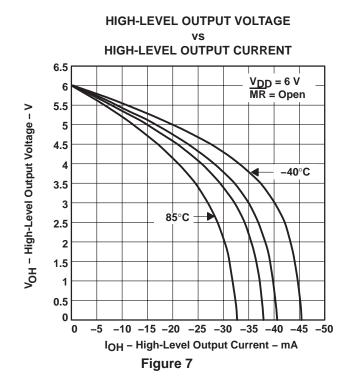
# **SUPPLY VOLTAGE**

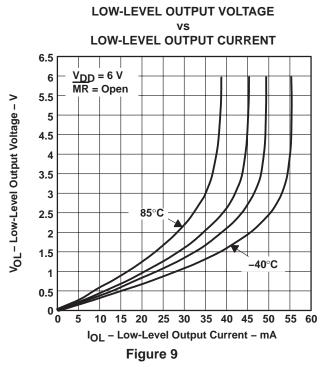


## MINIMUM PULSE DURATION AT SENSE

## THRESHOLD OVERDRIVE



Figure 5


– Minimum Pulse Duration at  $v_{sense}$  –  $\mu s$ 

### TYPICAL CHARACTERISTICS









www.ti.com 10-Jun-2022

### PACKAGING INFORMATION

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan            | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5)                   | Samples |
|------------------|------------|--------------|--------------------|------|----------------|---------------------|-------------------------------|--------------------|--------------|-------------------------------------------|---------|
| 5962-9959101Q2A  | ACTIVE     | LCCC         | FK                 | 20   | 1              | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-<br>9959101Q2A<br>TPS3307-<br>18MFKB | Samples |
| 5962-9959101QPA  | ACTIVE     | CDIP         | JG                 | 8    | 1              | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 9959101QPA<br>TPS3307-18M                 | Samples |
| TPS3307-18MFKB   | ACTIVE     | LCCC         | FK                 | 20   | 1              | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 5962-<br>9959101Q2A<br>TPS3307-<br>18MFKB | Samples |
| TPS3307-18MJGB   | ACTIVE     | CDIP         | JG                 | 8    | 1              | Non-RoHS<br>& Green | SNPB                          | N / A for Pkg Type | -55 to 125   | 9959101QPA<br>TPS3307-18M                 | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

## **PACKAGE OPTION ADDENDUM**

www.ti.com 10-Jun-2022

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

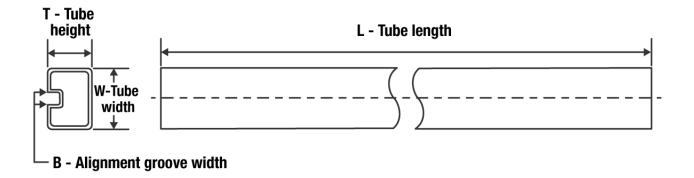
**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF TPS3307-18M:

Automotive: TPS3307-18-Q1

Enhanced Product: TPS3307-EP


### NOTE: Qualified Version Definitions:

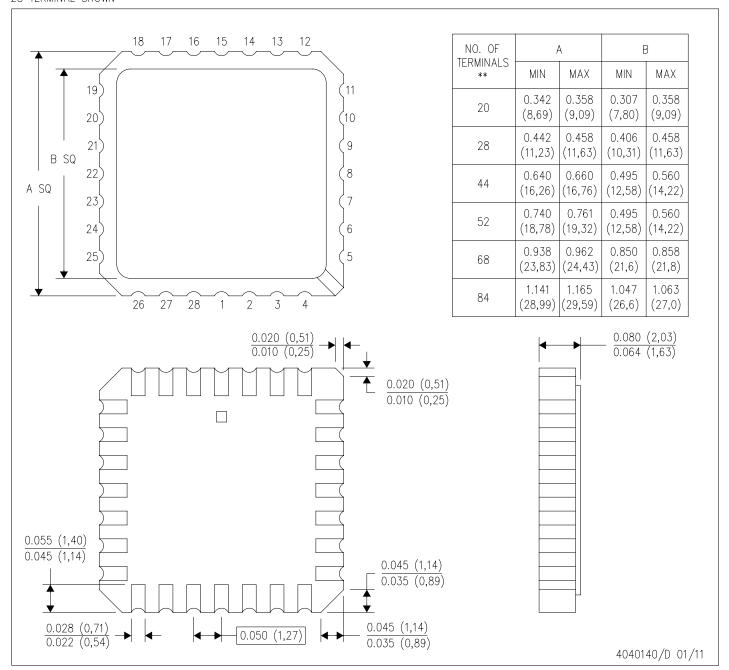
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

## PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

## **TUBE**




### \*All dimensions are nominal

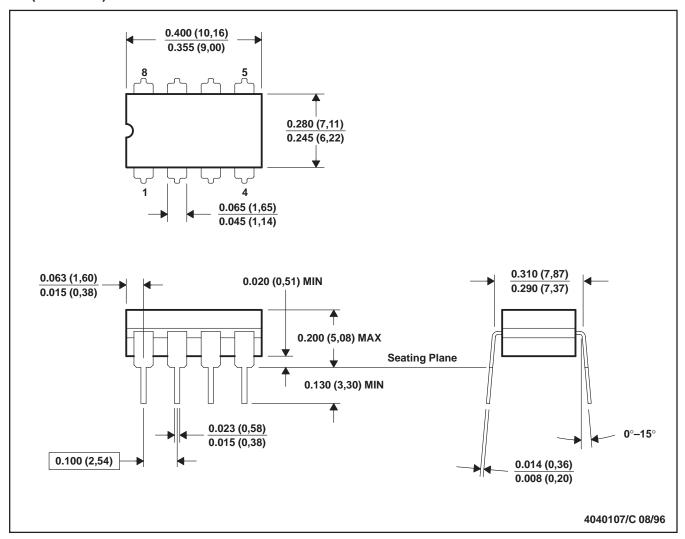
| Device          | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|-----------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| 5962-9959101Q2A | FK           | LCCC         | 20   | 1   | 506.98 | 12.06  | 2030   | NA     |
| TPS3307-18MFKB  | FK           | LCCC         | 20   | 1   | 506.98 | 12.06  | 2030   | NA     |

## FK (S-CQCC-N\*\*)

## LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN




NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



## JG (R-GDIP-T8)

### **CERAMIC DUAL-IN-LINE**



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

## **IMPORTANT NOTICE AND DISCLAIMER**

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated