

TRSF3243E

SLLSF05A - NOVEMBER 2021 - REVISED SEPTEMBER 2022

TRSF3243E 3-V to 5.5-V Multichannel RS-232 Compatible Line Driver and Receiver with ±15-kV IEC ESD protection

1 Features

Texas

INSTRUMENTS

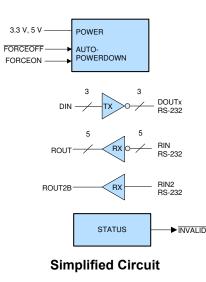
- ESD protection for RS-232 bus pins
 - ±15-kV Human-body model (HBM)
 - ±8-kV IEC61000-4-2, Contact discharge
 - ±15-kV IEC61000-4-2, Air-gap discharge
- Operates with single 3-V to 5.5-V V_{CC} supply
- Always-active noninverting receiver output (ROUT2B)
- Low standby current: 1 µA typical
- External capacitors: 4 × 0.1 µF •
- Accepts 5-V logic input with 3.3-V supply •
- Serial-mouse driveability ٠
- Supports operation up to 1 Mbit/s •
- Auto-powerdown feature to disable driver outputs when no valid RS-232 signal is sensed
- Available in space-saving RHB (5 mm x 5 mm QFN-32) package

2 Applications

- Industrial PCs •
- Wired networking
- Data center and networking equipment
- **Notebooks**
- Hand-held equipment

3 Description

The TRSF3243E consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8-kV ESD (IEC61000-4-2, Contact


Discharge) protection on serial-port connection pins. This device provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, this device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 1 Mbit/s and an increased slew-rate range of 18 V/µs to 150 V/µs.

Flexible control options for power management are available when the serial port is inactive. The autopowerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes the autopowerdown condition to occur.

Packaging Information

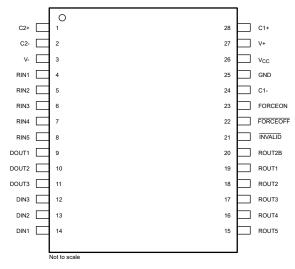
PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
TRSF3243E	VQFN (RHB) (32)	5,00 mm × 5,00 mm
	TSSOP (PW) (28)	9,70 mm × 4,40 mm

For all available packages, see the orderable addendum at (1) the end of the data sheet.

Table of Contents

1 Features 2 Applications 3 Description	.1
4 Revision History	
5 Pin Configuration and Functions	3
6 Specifications	
6.1 Absolute Maximum Ratings	. 5
6.2 ESD Ratings	. 5
6.3 ESD Ratings - IEC Specifications	. 5
6.4 Recommended Operating Conditions	
6.5 Thermal Information	6
6.6 Electrical Characteristics	6
6.7 Electrical Characteristics: Driver	7
6.8 Switching Characteristics: Driver	.7
6.9 Electrical Characteristics: Receiver	. 7
6.10 Switching Characteristics: Receiver	8
6.11 Electrical Characteristics: Auto-Powerdown	. 8
6.12 Switching Characteristics: Auto-Powerdown	. 8

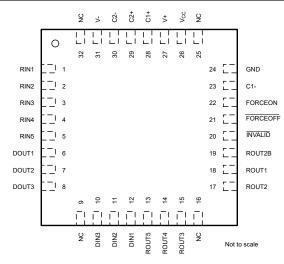
Parameter Measurement Information	9
7 Detailed Description	
7.1 Overview	12
Functional Block Diagram	12
7.2 Feature Description	13
7.3 Device Functional Modes	
8 Application and Implementation	14
8.1 Application Information	
8.2 Typical Application	14
8.3 Design Requirements	
8.4 Detailed Design Procedure	16
9 Power Supply Recommendations	
10 Layout	
10.1 Layout Guidelines	
10.2 Layout Example	
11 Mechanical, Packaging, and Orderable	
Information	


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision * (November 2021) to Revision A (September 2022)	Page
•	Deleted the Product Preview note from TSSOP (PW) in the Package Information table	1

5 Pin Configuration and Functions



	PIN		DESCRIPTION		
NO.	NAME				
1	C2+	—	Positive terminal of the charge-pump capacitor		
2	C2-	_	Negative terminal of the charge-pump capacitor		
NO. NAME TYPE ⁽¹⁾ 1 C2+ — Positive ter 2 C2- — Negative ter 3 V- Negative ter 4 RIN1			Negative charge-pump rail		
4	RIN1				
5	RIN2				
6	RIN3	1	RS-232 receiver inputs		
7	RIN4				
8	RIN5				
9	DOUT1				
10	DOUT2	0	RS-232 driver outputs		
11	DOUT3				
12	DIN3				
13	DIN2	1	Driver logic inputs		
14	DIN1				
15	ROUT5				
16	ROUT4				
17	ROUT3	0	Receiver logic outputs		
18	ROUT2				
19	ROUT1				
20	ROUT2B	_	Always-active non-inverting receiver logic output		
21	INVALID	0	Invalid Output Pin		
22	FORCEOFF	I	Auto Powerdown Control input (Refer to Truth Table)		
23	FORCEON	I	Auto Powerdown Control input (Refer to Truth Table)		
24	C1-	_	Negative terminal of the charge-pump capacitor		
25	GND	_	Ground		
26	V _{cc}	_	3-V to 5.5-V supply voltage		
27	V+	_	Positive charge-pump rail		
28	C1+	_	Positive terminal of the charge-pump capacitor		

Table 5-1. Pin Functions

(1) Signal Types: I = Input, O = Output, I/O = Input or Output.

Table 5-2. Pin Functions

PIN		ТҮРЕ	DESCRIPTION			
NO.	NO. NAME		DESCRIPTION			
1	RIN1					
2	RIN2					
3	RIN3	I	RS-232 receiver inputs			
4	RIN4					
5	RIN5					
6	DOUT1					
7	DOUT2	0	RS-232 driver outputs			
8	DOUT3					
9	NC	_	No internal connection			
10	DIN3					
11	DIN2	I	Driver logic inputs			
12	DIN1					
13	ROUT5					
14	ROUT4	0	Receiver logic outputs			
15	ROUT3					
16	NC	_	No internal connection			
17	ROUT2	0	Receiver outputs			
18	ROUT1					
19	ROUT2B	0	Always-active non-inverting receiver output			
20	INVALID	0	Invalid Output Pin			
21	FORCEOFF	I	Auto Powerdown Control input (Refer to Truth Table)			
22	FORCEON	I	Auto Powerdown Control input (Refer to Truth Table)			
23	C1-	_	Negative terminal of the charge-pump capacitor			
24	GND	_	Ground			
25	NC	_	No internal connection			
26	V _{CC}	_	3-V to 5.5-V supply voltage			
27	V+	_	Positive charge-pump rail			
28	C1+	_	Desitive terminal of the observe nume expecter			
29	C2+	_	— Positive terminal of the charge-pump capacitor			
30	C2-	_	Negative terminal of the charge-pump capacitor			
31	V-	_	Negative charge-pump rail			
32	NC	_	No internal connection			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive-output supply voltage range ⁽²⁾	ositive-output supply voltage range ⁽²⁾		7	V
V–	Negative-output supply voltage range ⁽²⁾	Negative-output supply voltage range ⁽²⁾		-7	V
V+ – V–	Supply voltage difference ⁽²⁾			13	V
		Driver (FORCEOFF, FORCEON)	-0.3	6	V
V	Input voltage range	Receiver	-25	25	v
Vo	Output voltage range	Driver	-13.2	13.2	V
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltages are with respect to network GND.

6.2 ESD Ratings

				VALUE	UNIT
		Human-body model (HBM), per ANSI/	All pins except RIN1, RIN2, RIN3, RIN4, RIN5, DOUT1, DOUT2 and DOUT3 pins	±3000	
V (ESD)	Electrostatic discharge	dischargo	RIN1, RIN2, RIN3, RIN4, RIN5, DOUT1, DOUT2 and DOUT3 pins to GND	±15000	V
	Charged device model (CDM), per ANS ESDA/JEDEC JS-002 ⁽²⁾	All pins	±1500		

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings - IEC Specifications

				VALUE	UNIT
	Electrostatic	IEC 61000-4-2 Contact Discharge (1)	RIN1, RIN2, RIN3, RIN4, RIN5, DOUT1,	±8,000	N
V (ESD)	discharge	IEC 61000-4-2 Air-gap Discharge ⁽¹⁾	DOUT2 and DOUT3 pins	±15,000	v

(1) A minimum of 1- μ F capacitor between V_{CC} and GND is required to meet the specified IEC 61000-4-2 rating.

6.4 Recommended Operating Conditions

see (1)

				MIN	NOM	MAX	UNIT
	Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	V
	Supply voltage		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	v			
VIH	Driver and control high-level input voltage	DIN, FORCEOFF, FORCEON	V _{CC} = 3.3 V	2			V
[∨] IH	Driver and control high-level hiput voltage		V _{CC} = 5 V	2.4			v
VIL	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON				0.8	V
VI	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0		5.5	V
VI	Receiver input voltage	•		-25		25	V
T _A	Operating free-air temperature			-40		85	°C

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

6.5 Thermal Information

		TRSF	TRSF3243E		
	THERMAL METRIC ⁽¹⁾	VQFN (RHB)	TSSOP (PW)	UNIT	
		32 PINS	28 PINS		
R _{0JA}	Junction-to-ambient thermal resistance	34.1	70.3	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	25.9	21.0	°C/W	
R _{0JB}	Junction-to-board thermal resistance	14.6	29.2	°C/W	
Ψյт	Junction-to-top characterization parameter	0.5	1.3	°C/W	
Ψјв	Junction-to-board characterization parameter	14.6	28.8	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	5.1	N/A	°C/W	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.6 Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS ⁽²⁾	MIN	TYP ⁽¹⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON			±0.01	±1	μA
		Auto-powerdown disabled	No load, FORCEOFF and FORCEON = V _{CC}		0.3	1.2	mA
I _{CC} Supply current		Powered off	No load, $\overline{FORCEOFF} = GND$		1	10	
	Auto-powerdown enabled	No load, FORCEOFF = V _{CC} , FORCEON = GND, All RIN are open or grounded, All DIN are grounded		1	10	μA	

(1)

All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2)

6.7 Electrical Characteristics: Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽³⁾	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND	5	5.4		V
V _{OL}	Low-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND		-5.4	-5	V
Vo	Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 = V_{CC} , 3-k Ω to GND at DOUT3, DOUT1 = DOUT2 = 2.5 mA	±5	·		V
I _{IH}	High-level input current	V _I = V _{CC}		±0.01	±1	μA
IIL	Low-level input current	V _I = GND		±0.01	±1	μA
I _{OS}	Short-circuit output current ⁽²⁾	$V_{CC} = 3.6 \text{ V},$ $V_O = 0 \text{ V}$ $V_{CC} = 5.5 \text{ V},$ $V_O = 0 \text{ V}$		±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V– = 0 V, V_O = ±2 V	300	10M		Ω
		FORCEOFF = GND $V_0 = \pm 12 \text{ V}, V_{CC} = 3 \text{ V to } 3.6 \text{ V}$			±25	
l _{off}	Output leakage current	$V_0 = \pm 10 \text{ V}, V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			±25	μA

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

(3) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

6.8 Switching Characteristics: Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS ⁽³⁾)	MIN	TYP ⁽¹⁾ N	IAX	UNIT
	•• • • • •		C _L = 1000 pF		250			
	Maximum data rate (see Figure 7-1)	$R_L = 3 k\Omega$, One DOUT switching	C _L = 250 pF,	V_{CC} = 3 V to 4.5 V	1000			kbit/s
	(0001.90001.)		C _L = 1000 pF,	V_{CC} = 4.5 V to 5.5 V	1000			
t _{sk(p)}	Pulse skew ⁽²⁾	C_{L} = 150 pF to 2500 pF,	R_L = 3 kΩ to 7 kΩ,	See Figure 7-2		25		ns
SR(tr)	Slew rate, transition region (see Figure 7-1)	$C_{L} = 150 \text{ pF} \text{ to } 1000 \text{ pF},$	R_L = 3 kΩ to 7 kΩ,	V _{CC} = 3.3 V	18		150	V/µs

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

(3) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

6.9 Electrical Characteristics: Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP⁽¹⁾	MAX	UNIT	
V _{OH}	High-level output voltage	I _{OH} = –1 mA	$V_{CC} - 0.6$	$V_{CC} - 0.1$		V	
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V	
V	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	2.4	2.4 2.4 V	
V _{IT+}	Positive-going input theshold voltage	V _{CC} = 5 V		1.9	2.4		
V	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.1		V	
V _{IT–}	Negative-going input timeshold voltage	V _{CC} = 5 V	0.8	1.4		v	
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.5		V	
I _{off}	Output leakage current (except ROUT2B)	FORCEOFF = 0 V		±0.05	±10	μA	
r _i	Input resistance	$V_1 = \pm 3 V$ to $\pm 25 V$	3	5	7	kΩ	

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

6.10 Switching Characteristics: Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽³⁾	TYP ⁽¹⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 7-3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 7-3	150	ns
t _{en}	Output enable time	C_L = 150 pF, R_L = 3 k Ω , See Figure 7-4	200	ns
t _{dis}	Output disable time	C_L = 150 pF, R_L = 3 k Ω , See Figure 7-4	200	ns
t _{sk(p)}	Pulse skew ⁽²⁾	See Figure 7-3	50	ns

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2)

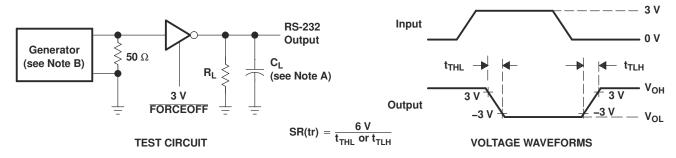
Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. Test conditions are C1–C4 = 0.1 µF at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2–C4 = 0.33 µF at V_{CC} = 5 V ± 0.5 V. (3)

6.11 Electrical Characteristics: Auto-Powerdown

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7-5)

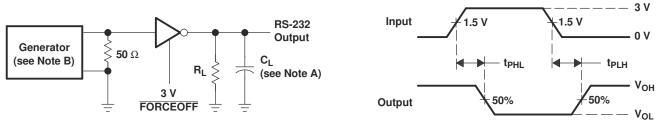
	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{FORCEOFF} = V_{CC}$		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, $\overline{\text{FORCEOFF}} = V_{CC}$	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, $\overline{\text{FORCEOFF}} = V_{CC}$	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}$, FORCEON = GND, FORCEOFF = V_{CC}	V _{CC} – 0.6		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V _{CC}		0.4	V

6.12 Switching Characteristics: Auto-Powerdown


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7-5)

	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

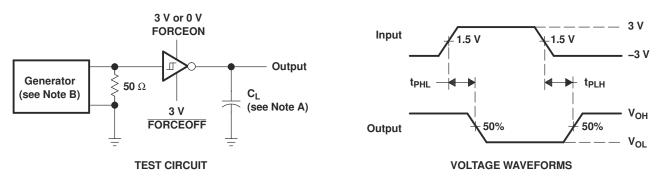
(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.


Parameter Measurement Information

NOTES: A. CL includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 1 Mbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 7-1. Driver Slew Rate

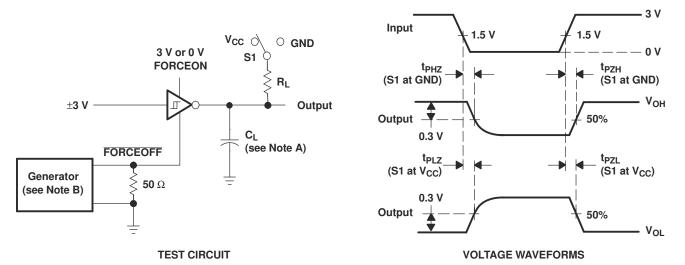

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 1 Mbit/s, $Z_{O} = 50 \Omega$, 50% duty cycle, $t_{r} \le 10$ ns, $t_{f} \le 10$ ns.

Figure 7-2. Driver Pulse Skew



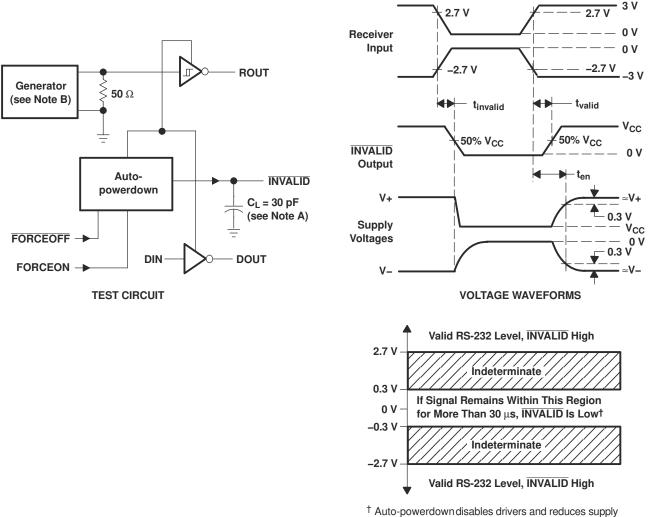
NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: Z₀ = 50 Ω , 50% duty cycle, t_r \leq 10 ns, t_f \leq 10 ns.

Figure 7-3. Receiver Propagation Delay Times

NOTES: A. C_L includes probe and jig capacitance.

- B. The pulse generator has the following characteristics: $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .


Figure 7-4. Receiver Enable and Disable Times

Texas

INSTRUMENTS

www.ti.com

current to 1 µA.

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 5 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 7-5. INVALID Propagation Delay Times and Supply Enabling Time

7 Detailed Description

7.1 Overview

The TRSF3243E device consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM and IEC61000-4-2, Air-Gap Discharge) and ±8-kV ESD (IEC61000-4-2, Contact Discharge) protection on serial-port connection pins. The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector.

The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. The device operates at data signaling rates up to 500 kbit/s and a maximum of 30-V/µs driver output slew rate.

Functional Block Diagram

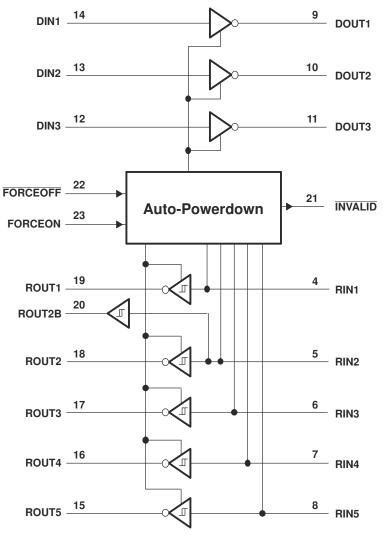


Figure 7-1. Logic Diagram

7.2 Feature Description

Auto-powerdown can be disabled when FORCEON and FORCEOFF are high and should be done when driving a serial mouse. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V or has been between -0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 µs. Refer to Figure 7-5 for receiver input levels.

7.3 Device Functional Modes

Table 7-1 through Table 7-3 show the device functional modes.

Table 7-1. Each Driver							
	I	NPUTS ⁽¹⁾		OUTPUT			
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS		
Х	Х	L	Х	Z	Powered off		
L	Н	Н	Х	Н	Normal operation with		
Н	Н	Н	Х	L	auto-powerdown disabled		
L	L	Н	Yes	Н	Normal operation with		
Н	L	н	Yes	L	auto-powerdown enabled		
Х	L	Н	No	Z	Powered off by auto-powerdowr feature		

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

Table 7-2. Each Receiver

INP	JTS ⁽¹⁾		OUTPUT	RECEIVER STATUS
RIN	FORCEON	FORCEOFF	ROUT	RECEIVER STATUS
X	Х	L	Z	Powered off
L	Х	Н	Н	
Н	Х	Н	L	Normal operation with auto-powerdown disabled/enabled
Open	Х	Н	Н	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

Table 7-3. ROUT2B And Outputs INVALID	Table 7-3	ROUT2B And	Outputs INVALID
---------------------------------------	-----------	------------	-----------------

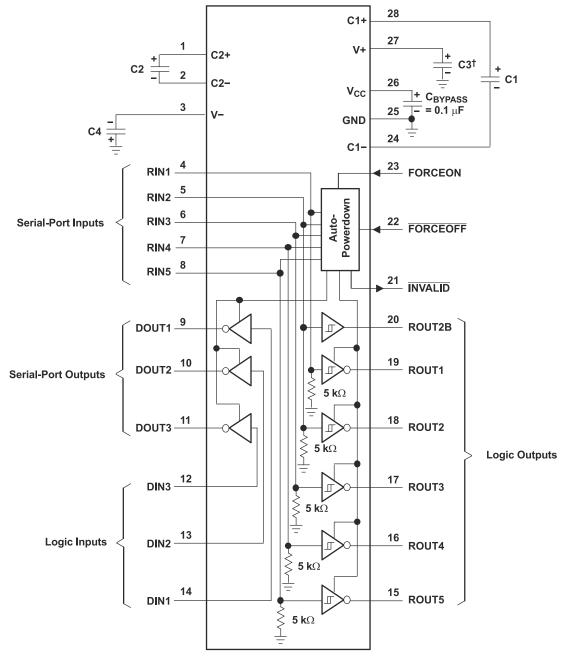
	INP	JTS ⁽¹⁾	· · · · · · · · · · · · · · · · · · ·	OUT	PUTS			
VALID RIN RS-232 LEVEL	RIN2	FORCEON	FORCEOFF	INVALID	ROUT2B	OUTPUT STATUS		
Yes	L	Х	Х	Н	L			
Yes	Н	Х	Х	Н	Н	- Always active		
Yes	Open	Х	Х	Н	L			
No	Open	Х	Х	L	L			

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

8 Application and Implementation

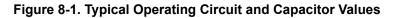
Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.


8.1 Application Information

For proper operation, add capacitors as shown in Figure 8-1. Pins 12 through 23 connect to UART or generalpurpose logic lines. RS-232 lines on Pins 4 through 11 connect to a connector or cable.

8.2 Typical Application


Three driver and five receiver channels are supported for full duplex transmission with hardware flow control. The five 5-k Ω resistors are internal to the device.

A. C3 can be connected to $V_{CC} \, \text{or GND}$

B. Resistor values shown are nominal.

8.3 Design Requirements

For this design example, use the values in V_{CC} vs Capacitor Values.

- V_{CC} minimum is 3 V and maximum is 5.5 V.
- Maximum recommended bit rate is 1 Mbps.

Table 8-1. V_{CC} vs Capacitor Values

V _{cc}	C1	C2, C3, and C4
3.3 V ± 0.3 V	0.1 µF	0.1 µF
5 V ± 0.5 V	0.047 µF	0.33 µF
3 V to 5.5 V	0.1 µF	0.47 µF

8.4 Detailed Design Procedure

TRSF3243E has integrated charge-pump that generates positive and negative rails needed for RS-232 signal levels. Main design requirement is that charge-pump capacitor terminals must be connected with recommended capacitor values. Charge-pump rail voltages and device supply pin must be properly bypassed with ceramic capacitors.

9 Power Supply Recommendations

The V_{CC} voltage must be connected to the same power source used for logic device connected to DIN and ROUT pins. V_{CC} must be between 3 V and 5.5 V.

10 Layout

10.1 Layout Guidelines

As shown in Layout Example, charge-pump and supply voltage capacitors must be located very close to device pins. Non-polarized ceramic capacitors are recommended. If polarized tantalum or electrolytic capacitors are used, they should be connected as per Typical Operating Circuit and Capacitor Values.

10.2 Layout Example

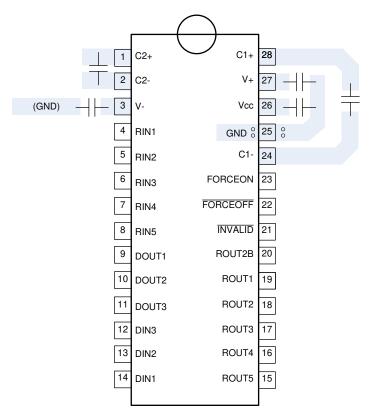


Figure 10-1. Example Layout

Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

11.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated