User's Guide Using the UCC28781EVM-053 60-W, 15-V ZVS-Flyback Converter

TEXAS INSTRUMENTS

ABSTRACT

This user's guide provides direction on how to operate and evaluate the UCC28781EVM-053 for various performance metrics. The UCC28781EVM-053 implements a typical application for a high-voltage, wide-Vin, single output ZVSF power converter operating from 50 V to 500 V DC input to produce a 15-V output rail for up to 4 A of load current. The EVM includes a means to operate from the standard world-wide AC input range of 90 V_{RMS} to 264 V_{RMS} , as well.

Table of Contents

1 Introduction	2
2 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines	3
3 Description of EVM	
4 Electrical Performance Specifications	5
5 Schematic Diagram	7
6 Description of Test Set-ups	
6.1 Typical Applications	
6.2 Using the EVM with a DC Voltage Source	9
6.3 Using the EVM with an AC Voltage Source	9
7 Test Set-ups	10
7.1 Test Set-up Requirements	10
7.2 Test Set-up Diagrams	12
7.3 Terminals and Test Points	
8 Performance Data and Typical Characteristic Curves	14
8.1 Efficiency Results of EVM with DC Input	14
8.2 Efficiency Result of 4-Point Average at 15-Vout	15
8.3 Efficiency Typical Results Graphs with DC Inputs	1 <mark>6</mark>
8.4 Switching Frequency	17
8.5 Key Switching Waveforms and Operating Mode Load Current	
8.6 Thermal Images at Full Load (15 V, 4.0 A) with DC and AC Inputs	
9 Transformer Details	20
10 EVM Assembly and Layout	21
11 List of Materials	

Trademarks

All trademarks are the property of their respective owners.

1

1 Introduction

The UCC28781EVM-053 is a 60-W, 15-V evaluation module (EVM) for evaluating a high-voltage DC-input zerovoltage-switching flyback (ZVSF) converter for use as a bias supply in traction inverters and other applications. It is intended for evaluation purposes and is not intended to be an end product. The EVM converts a DC input voltage range of 50 V to 500V down to an isolated output of 15 V. Output current is rated for a maximum of 4 A for input voltages between 250 V and 500 V, and derated to a maximum of 2 A for input voltages between 50 V and 250 V. An over-power capability of up to approximately 133% of rated power is limited to a 160-ms duration.

Alternatively, the EVM may be powered from an *isolated* AC source with voltages between 90-V_{RMS} to 264-V_{RMS} by connecting the rectified-AC section to the DC input as presented later in this user guide.

2

2 General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines

Always follow TI's setup and application instructions, including use of all interface components within their recommended electrical rated voltage and power limits. Always use electrical safety precautions to help ensure your personal safety and those working around you. Contact TI's Product Information Center http:// support/ti./com for further information.

Save all warnings and instructions for future reference.

WARNING

Failure to follow warnings and instructions may result in personal injury, property damage or death due to electrical shock and burn hazards.

The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed circuit board assembly. It is *intended strictly for use in development laboratory environments, solely for qualified professional users having training, expertise and knowledge of electrical safety risks in development and application of high voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas Instruments.* If you are not suitable qualified, you should immediately stop from further use of the HV EVM.

- 1. Work Area Safety
 - a. Keep work area clean and orderly.
 - b. Qualified observer(s) must be present anytime circuits are energized.
 - c. Effective barriers and signage must be present in the area where the TI HV EVM and its interface electronics are energized, indicating operation of accessible high voltages may be present, for the purpose of protecting inadvertent access.
 - d. All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related apparatus used in a development environment exceeding 50Vrms/75VDC must be electrically located within a protected Emergency Power Off EPO protected power strip.
 - e. Use stable and nonconductive work surface.
 - f. Use adequately insulated clamps and wires to attach measurement probes and instruments. No freehand testing whenever possible.
- 2. Electrical Safety

As a precautionary measure, it is always a good engineering practice to assume that the entire EVM may have fully accessible and active high voltages.

- a. De-energize the TI HV EVM and all its inputs, outputs and electrical loads before performing any electrical or other diagnostic measurements. Revalidate that TI HV EVM power has been safely de-energized.
- b. With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring, measurement equipment connection, and other application needs, while still assuming the EVM circuit and measuring instruments are electrically live.
- c. After EVM readiness is complete, energize the EVM as intended.

WARNING

While the EVM is energized, never touch the EVM or its electrical circuits, as they could be at high voltages capable of causing electrical shock hazard.

3. Personal Safety

a. Wear personal protective equipment (for example, latex gloves or safety glasses with side shields) or protect EVM in an adequate lucent plastic box with interlocks to protect from accidental touch.

Limitation for safe use:

EVMs are not to be used as all or part of a production unit.

3 Description of EVM

The UCC28781EVM-053 consists of a 4-layer printed circuit board (pcb) with through-hole components on the top side and surface-mount components on the bottom side. The actual conversion circuitry is contained within the break-away slots. Terminal blocks on the EVM for input and output connection are positioned outside the break-away slots to avoid being included in any power-density assessment. A jumper for enabling and disabling the X-capacitor discharge feature is also positioned outside the slots, since it is provided for evaluation purposes only.

Control circuit reworks per Figure 5-2 are added to the bottom side, but not shown in the Bottom View, below. Also on the bottom side are resistors R33, R34, and R35 applied across the bulk capacitor C2 to provide rapid bleed-down of high voltage upon removal of AC input power, if the Rectified-AC Output was left unconnected to a load. Not normally used in a real design, their power loss is subtracted from measured input power.

The main devices used in this design are zero-voltage-switching flyback controller UCC28781-Q1 and isolated driver UCC5304. Please read this user's guide thoroughly before applying power to this board.

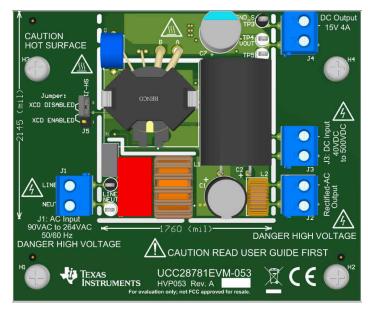


Figure 3-1. UCC28781EVM-053 Top View

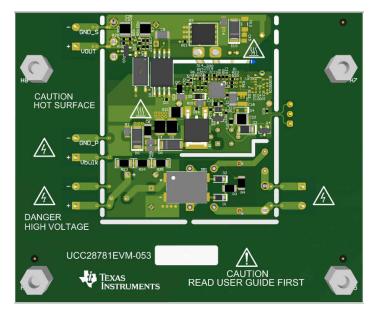


Figure 3-2. UCC28781EVM-053 Bottom View

4

4 Electrical Performance Specifications

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CH	ARACTERISTICS	I I				
V _{IN}	Input line voltage (DC)		50	400	500	V
D (5)	Input power at no-load,	V _{IN} = 500 V _{DC} , I _O = 0 A		47		mW
P _{STBY} ⁽⁵⁾	$V_0 = 15 V$	V _{IN} = 250 V _{DC} , I _O = 0 A		36		mW
OUTPUT C	HARACTERISTICS	·				
V _O Output voltage		V_{IN} = 250 to 500 V_{DC} , I_{O} = 4.0 A to 0 A	447	447 45		V
vo	Output voltage	V_{IN} = 40 to 250 V_{DC} , I_{O} = 2.0 A to 0 A	14.7	14.7 15		v
I _{O(FL_HI)}	Full-load rated output current, high input range	V _{IN} = 250 to 500 V _{DC}			4	А
I _{O(FL_LO)}	Full-load rated output current, low input range	V_{IN} = 40 to 250 V_{DC}			2	А
	Output ripple voltage, peak to peak, high input range	V_{IN} = 250 to 500 V_{DC} , I_O = 0 A to 4 A		350	500	
V _{O_pp}	Output ripple voltage, peak to peak, low input range	V_{IN} = 40 to 250 V_{DC} , I_O = 0 A to 2 A	200		300	mVpp
P _{O(OPP)} ⁽⁴⁾	Over-power protection threshold	V _{IN} = 40 to 500 V _{DC}			70	W
t _{OPP} ⁽⁴⁾	Over-power protection duration	V_{IN} = 40 to 500 V_{DC} , $P_O > P_{O(OPP)}$		160		ms
ΔV _O	Output voltage transient deviation at load-step	$\rm I_O$ steps between 0 A and $\rm I_{O(FL_HI)}$ at 100 Hz			±1000	mVpp
SYSTEM C	HARACTERISTICS	·				
	Full lead officiance (2)	V _{IN} = 500 V _{DC} , I _O = 4 A		0.932		
η _{FL}	Full-load efficiency ⁽²⁾	V _{IN} = 250 V _{DC} , I _O = 2 A		0.937		
n	4-point average efficiency ^{(2) (3)}	V _{IN} = 500 V _{DC} , I _{O(FL_HI)} range		0.905		
η _{avg}	4-point average enciency (*)	V _{IN} = 250 V _{DC} , I _{O(FL_LO)} range		0.919		
n	Efficiency at 10% load ⁽²⁾	V_{IN} = 500 V_{DC} , I_O = 10% of $I_{O(FL_HI)}$		0.808		
η _{10%}	Efficiency at 10% load ⁽²⁾	V_{IN} = 250 V_{DC} , I_O = 10% of $I_{O(FL_LO)}$		0.835		
T _{AMB}	Ambient operating temperature range	V_{IN} = 90 to 264 V_{DC} , V_{O} = 20 V, I_{O} = 0 to 3.25 A		25		°C

(1) The performance listed in this table is based on the test results from a single board, using either DC input or AC input for their respective results.

(2) Power losses from external input and output cables are not included in efficiency results.

(3) Average efficiency of four load points: $I_0 = 100\%$, 75%, 50%, and 25% of $I_{O(FL)}$.

(4) OPP function not available in UCC28781A.

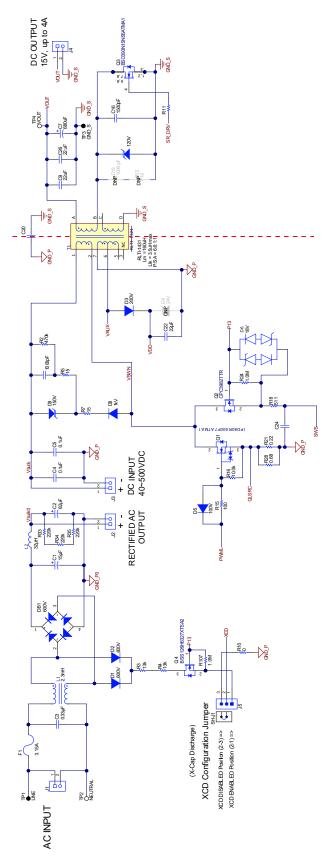
(5) Input stand-by power measured with XCD function disabled.

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
INPUT CH	ARACTERISTICS					
V _{IN}	Input AC-line voltage (RMS)		90	115 / 230	264	V
f _{LINE}	Input AC-line frequency		47	50 / 60	63	Hz
P _{STBY} ⁽⁵⁾ Input power at no-load,		V _{IN} = 230 V _{RMS} , I _O = 0 A		42		mW
(6)	$V_0 = 15 V$	V _{IN} = 115 V _{RMS} , I _O = 0 A		36		
OUTPUT O	HARACTERISTICS					
Vo	Output voltage	V_{IN} = 180 to 264 V_{RMS} , I_O = 0 to $I_{O(FL_HI)}$	14.7	15	15.3	V
vo	Oulput voltage	V_{IN} = 90 to 180 V_{RMS} , I_O = 0 to $I_{O(FL_LO)}$				
I _{O(FL_HI)}	Full-load rated output current, high input range	V_{IN} = 180 to 264 V_{RMS}			4	А
I _{O(FL_LO)}	Full-load rated output current, low input range	V _{IN} = 90 to 180 V _{RMS}			2	А
P _{O(OPP)} (4)	Over-power protection threshold	V _{IN} = 90 to 264 V _{RMS}			70	W
t _{OPP} ⁽⁴⁾	Over-power protection duration	V_{IN} = 90 to 264 V_{RMS} , $P_O > P_{O(OPP)}$		160		ms
ΔV _O	Output voltage transient deviation at load-step	I_{O} steps between 0 A and $I_{O(FL_HI)}$ at 100 Hz			±1000	mVpp
SYSTEMS	CHARACTERISTICS ⁽⁶⁾				•	
	Full lead officiency (2)	V_{IN} = 230 V_{RMS} , I_O = $I_{O(FL_HI)}$		0.9336		
η _{FL}	Full-load efficiency ⁽²⁾	V_{IN} = 115 V_{RMS} , I_O = $I_{O(FL_LO)}$		0.9271		
2	4-point average efficiency ^{(2) (3)}	V _{IN} = 230 V _{RMS} , I _{O(FL_HI)} range		0.9213		
η _{avg}	4-point average enciency (-)	V _{IN} = 115 V _{RMS} , I _{O(FL_LO)} range		0.9150		
n	Efficiency at 10% load ⁽²⁾	V_{IN} = 230 V_{RMS} , I_O = 10% of $I_{O(FL_HI)}$		0.8684		
η _{10%}	Efficiency at 10% load ⁽²⁾	V_{IN} = 115 V_{RMS} , I_O = 10% of $I_{O(FL_LO)}$		0.8480		
T _{AMB}	Ambient operating temperature range	V_{IN} = 90 to 264 V_{RMS} , I_O = 0 to $I_{O(FL)}$		25		°C

(1) The performance listed in this table is based on the test results from a single board, using either DC input or AC input for their respective results.

(2) Power losses from external input and output cables are not included in efficiency results.

(3) Average efficiency of four load points: $I_0 = 100\%$, 75%, 50%, and 25% of $I_{O(FL)}$.


(4) OPP function not available in UCC28781A.

(5) Input stand-by power measured with XCD function disabled.

(6) Excludes power loss from bulk voltage bleeder resistors R33, R34, and R35 across bulk capacitor C2.

5 Schematic Diagram

7

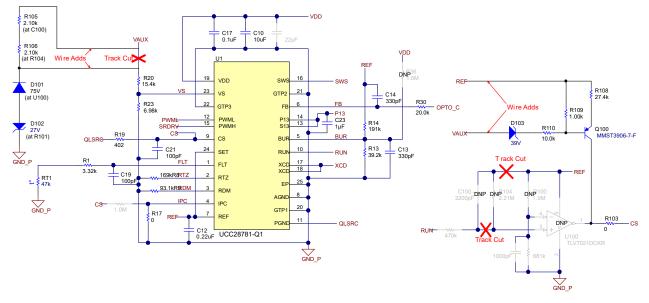


Figure 5-2. UCC28781EVM-053 Schematic Diagram (2 of 3) - Controller Section

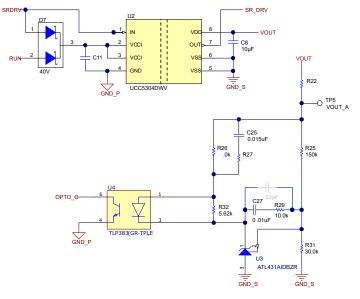


Figure 5-3. UCC28781EVM-053 Schematic Diagram (3 of 3) - Feedback Section

6 Description of Test Set-ups

6.1 Typical Applications

- · High-voltage automotive traction inverter bias supply
- High-voltage automotive redundant supply
- High-density AC-to-DC or DC-to-DC auxiliary power supplies

6.2 Using the EVM with a DC Voltage Source

The UCC28781EVM-053 may be powered directly from an isolated high-voltage DC source ranging from 500 V down to < 50 V. In general, input voltage must be > 100 V to start and may be reduced to < 50 V after start-up. Output current should be limited to 2 A or less when starting with input voltage < 250 V.

Full-rated output power (60 W) may be obtained for input voltages in the [250-V to 500-V] range. Output power rating is reduced (30 W) for input voltages in the [50-V to 250-V] range due to the high rms level of primary current at low input voltages.

The isolated DC source should be connected to the EVM at J3 (DC INPUT terminal block) using a lowimpedance cable such as suitably-insulated 18AWG twisted-pair wire less than 1 meter in length. The EVM has very little on-board bulk-voltage by-pass capacitance at the DC input, so an additional high-voltage capacitor may be added externally to J3 to augment the DC bulk voltage for certain performance tests.

When the DC input is used, the AC section of the EVM should remain completely unused, without any connections to terminal blocks J1 and J2. Also, the XCD Jumper should be installed in the "XCD Disabled" position at J5.

At light loads, the DC input current consists of pulses at the burst mode frequency, which digital multimeters (DMMs) cannot properly average and measure. For accurate input current measuremetns at light loads, a high-voltage $2-\mu$ F film capacitor should be applied across the DC input terminal block. Also, a 10-W, 100- Ω resistor should be inserted in series with the DC input as shown in Figure 7-1 to form an R-C filter which smooths the pulsing input currents.

The output of the EVM (15 V) is taken from terminal block J4 which should be connected to a passive load (high-power resistor or resistor bank) or an active electronic load. An active load usually affords great flexibility in loading methods and perturbations.

6.3 Using the EVM with an AC Voltage Source

The UCC28781EVM-053 may also be powered from an isolated high-voltage AC source ranging from 264 V_{RMS} down to 90 V_{RMS} with line frequency ranging from 50 Hz to 60 Hz. In general, input voltage must be > 90 V_{RMS} to start and output current should be limited to 2 A or less when starting with input voltage < 180 V_{RMS}.

Full-rated output power (60 W) may be obtained for input voltages in the $180-V_{RMS}$ to $264-V_{RMS}$ range. Output power rating is reduced (30 W) for input voltages in the $90-V_{RMS}$ to $180-V_{RMS}$ range due to the high rms level of primary current at low input voltages.

The isolated AC source should be connected to the EVM at J1 (AC INPUT terminal block) using a lowimpedance cable such as suitably-insulated 18AWG twisted-pair wire less than 1 meter in length. The EVM provides the traditional full-wave rectified and filtered bulk-voltage section to enable evaluation of ZVSF performance when powered by an AC line. The output of the AC section is connected to the DC input by jumpering terminal block J2 to block J3 with short insulated jumper wires, observing the proper polarities. See connections per Figure 7-2.

When using an AC line input, the X-Cap Discharge (XCD) feature of the UCC28781-Q1 may be evaluated by installing the XCD Jumper into the "XCD ENABLED" position at J5. Remember to reposition the XCD Jumper into the "XCD DISABLED" position any time the AC input is not being used to avoid the risk of component damage from DC operation.

The output of the EVM (15 V) is taken from terminal block J4 which should be connected to a passive load (high-power resistor or resistor bank) or an active electronic load. An active load usually affords great flexibility in loading methods and perturbations.

7 Test Set-ups

7.1 Test Set-up Requirements

7.1.1 Test Set-up Requirements for DC Input

Safety: This evaluation module is not encapsulated and there are accessible voltages that are greater than 50 V_{DC} .

Isolation Input Transformer: A suitably rated 1:1 isolation transformer shall be used on the input(s) to this EVM and be constructed in a manner in which the primary winding(s) are separated from the secondary winding(s) by reinforced insulation, double insulation, or a screen connected to the protective conductor terminal.

WARNING

- If you are not trained in the proper safety of handling and testing power electronics please do not test this evaluation module.
- While the EVM is energized, never touch the EVM or its electrical circuits, as they could be at high voltages capable of causing electrical shock hazard.
- Caution Hot surface. Contact may cause burns. Do not touch!
- Read this user's guide thoroughly before making test.

Voltage Source: Line-Isolated DC source capable of handling 100-W power level.

Output Meters: Digital voltage meter, digital current meter

Input Meters: Digital voltage meter, digital current meter

Oscilloscope:

- 4-Channel, 500 MHz bandwidth.
- Probes capable of handling 600 V.

Output Load: Resistive or electronic load capable of handling 100 W at 15 V.

Recommended Wire Gauge: Insulated 18AWG.

Set up the test configuration for DC input as shown in Figure 7-1.

WARNING

Caution: Do not leave EVM powered when unattended.

7.1.2 Test Set-up Requirements for AC Input

Safety: This evaluation module is not encapsulated and there are accessible voltages that are greater than 50 V_{DC} .

Isolation Input Transformer: A suitably rated 1:1 isolation transformer shall be used on the input(s) to this EVM and be constructed in a manner in which the primary winding(s) are separated from the secondary winding(s) by reinforced insulation, double insulation, or a screen connected to the protective conductor terminal.

WARNING

- If you are not trained in the proper safety of handling and testing power electronics please do not test this evaluation module.
- While the EVM is energized, never touch the EVM or its electrical circuits, as they could be at high voltages capable of causing electrical shock hazard.
- Caution Hot surface. Contact may cause burns. Do not touch!
- · Read this user's guide thoroughly before making test.

Voltage Source: Isolated AC source or variable AC transformer capable of 264 V_{RMS} and capable of handling 100-W power level. **Warning: Do not apply DC voltage to this board when the X-capacitor discharge function is enabled, or damage may happen.** If a DC voltage source must be used, the XCD Jumper at J5 must be set to "XCD DISABLED" position.

Output Meters: Digital voltage meter, digital current meter

Input Power Analyzer: Capable of measuring 10 mW to 100 W of input power and capable of handling 264- V_{RMS} input voltage. Some power analyzers may require a precision shunt resistor for measuring input current to measure input power of 5 W or less. Please read the power analyzer's user manual for proper measurement setups for full power and for stand-by power.

Oscilloscope:

- 4-Channel, 500 MHz bandwidth.
- Probes capable of handling 600 V.

Output Load: Resistive or electronic load capable of handling 100 W at 15 V.

Recommended Wire Gauge: Insulated 18AWG.

Set up the test configuration for AC input as shown in Figure 7-2.

WARNING

Caution: Do not leave EVM powered when unattended.

!! Do not apply DC voltage source to the AC input of this board or damage may happen! (See above set-up of Voltage Source)

7.2 Test Set-up Diagrams

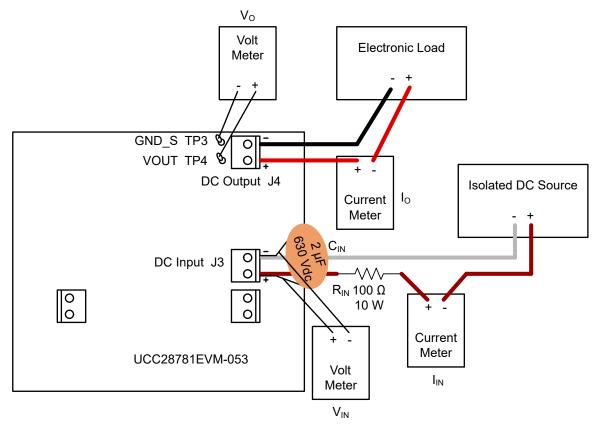
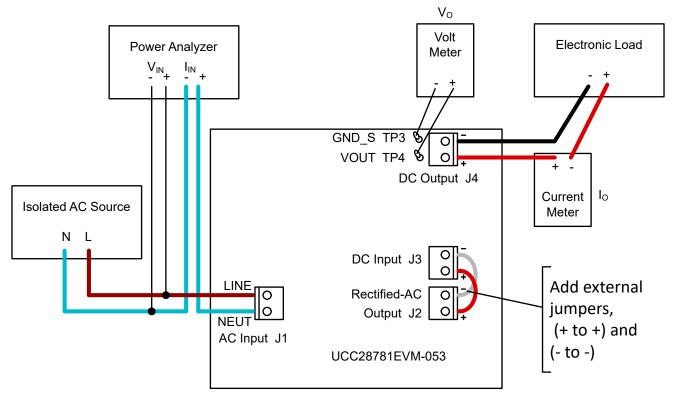



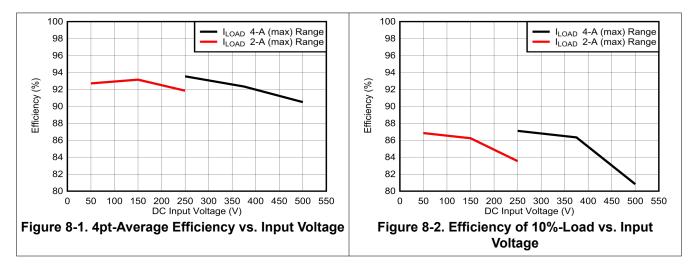
Figure 7-1. UCC28781EVM-053 Test Set-up Diagram for DC Input

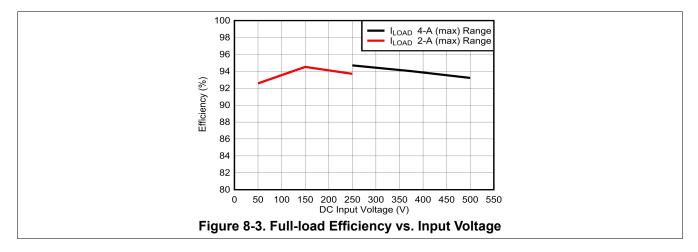
7.3 Terminals and Test Points

Terminals	s and TEST POINTS	NAME	DESCRIPTION
J1-1	- Terminal Block J1	LINE	Primary-side AC-input "Line" or Line-1.
J1-2		NEUT	Primary-side AC-input "Neutral" or Line-2.
J2-1	— Terminal Block J2	Vbulk0	Primary-side rectified and filtered positive voltage output "Vbulk0" (+) derived from AC source.
J2-2		GND_P0	Primary-side rectified and filtered negative voltage output "GND_P0" (-) derived from AC source.
J3-1	- Terminal Block J3	Vbulk	Primary-side positive voltage input "Vbulk" (+) derived from DC source.
J3-2		GND_P	Primary-side negative voltage input "GND_P" (-) derived from DC source.
J4-1	- Terminal Block J4	VOUT	Secondary-side DC voltage output "VOUT" (+) positive connection.
J4-2		GND_S	Secondary-side DC voltage output "GND_S" (-) negative connection.
J5-1		AC-Sense	Primary-side sense and discharge path from X-capacitor.
J5-2	3-Pin Header J5	XCD	Primary-side connection to XCD pins of UCC28781-Q1 controller.
J5-3		GND_P	Primary-side ground reference, used to disable XCD function.
TP1	Input test point near J1-1	LINE	Primary-side AC input monitor point - Line (or Line 1).
TP2	Input test point near J1-2	NEUT	Primary-side AC input monitor point - Neutral (or Line 2).
TP3	Output test point near J4-2	GND_S	Secondary-side DC output monitor "GND_S" (-) ground reference.
TP4	Output test point near J4-1	VOUT	Secondary-side DC output monitor "VOUT" (+) positive reference.
TP5	Output test point near J4-1	VOUT_A	Secondary-side DC insertion point "VOUT_A" for small-signal loop-stability analysis.

Table 7-1. Input / Output Terminals and Test-Point Functions

8 Performance Data and Typical Characteristic Curves 8.1 Efficiency Results of EVM with DC Input

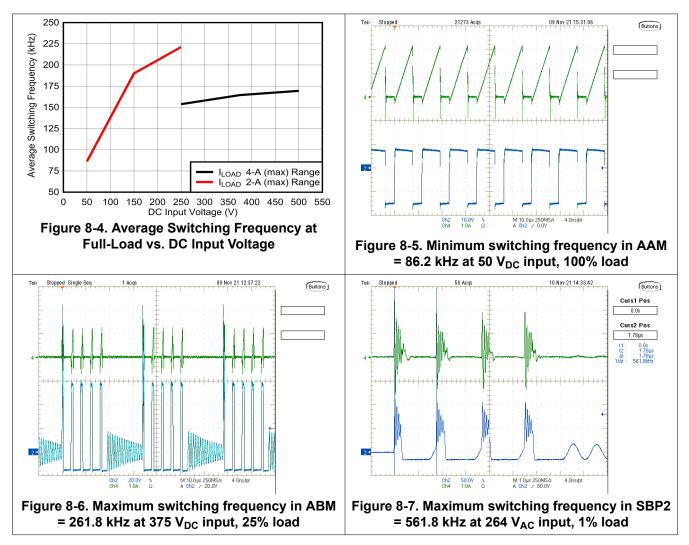

V _{IN} (V _{DC})	P _{IN} (W)	V _{OUT} (V)	I _{OUT} (A)	I _{ОUT} (%)	Efficiency at I _{OUT}	Efficiency 4pt-Average	Average Switching Frequency at Full Load
	63.990	14.090	4.001	100%	0.9322		170 kHz
-	48.464	14.915	3.002	75%	0.9239		
500 I _{FL_HI} range	32.991	14.919	2.003	50%	0.9058	0.9050	
	17.462	14.925	1.004	25%	0.8581		
	7.484	14.930	0.405	10%	0.8082	_	
	63.454	14.911	4.001	100%	0.9402		165 kHz
-	47.820	14.917	3.003	75%	0.9368		
375 I _{FL_HI} range	32.377	14.921	2.003	50%	0.9231	0.9234	
	16.762	14.928	1.003	25%	0.8936	-	
	6.999	14.933	0.405	10%	0.8634	_	
	63.01	14.910	4.002	100%	0.9470		154 kHz
-	47.36	14.920	3.002	75%	0.9458	0.9354	
250	31.89	14.925	2.002	50%	0.9370		
I _{FL_HI} range	16.44	14.928	1.004	25%	0.9118		
-	6.95	14.934	0.405	10%	0.8711	_	
	31.89	14.925	2.002	50% 0.9370	221 kHz		
-	24.11	14.928	1.500	75%	0.9287	_	
250	16.44	14.928	1.004	25%	0.9118	0.9185	
I _{FL_LO} range	8.34	14.938	0.501	25%	0.8965	_	
_	3.65	14.940	0.204	10%	0.8354	_	
	31.62	14.927	2.002	100%	0.9452		190 kHz
-	23.79	14.930	1.500	75%	0.9414	_	
150 I _{FL LO} range	16.14	14.931	1.004	50%	0.9291	0.9315	
IFL_LO range	8.23	14.934	0.502	25%	0.9105	_	
_	3.47	14.938	0.200	10%	0.8624	_	
	32.28	14.925	2.002	100%	0.9257		86.2 kHz
-	23.94	14.930	1.500	75%	0.9357		
50	15.98	14.933	1.004	50%	0.9384	0.9271	
I _{FL_LO} range	8.25	14.935	0.502	25%	0.9085	1	
-	3.51	14.939	0.204	10%	0.8685	1	
For referen	ice only: CoC Ti	er 2, 4pt-average e	efficiency ≥ 0.890	for 15 V, 60 W (a	t 230V _{RMS})		I
		ier 2, 10%-load et					


8.2 Efficiency Result of 4-Point Average at 15-Vout

	lab	e 8-2. Efficie	ncy lest Data	01115-V Out	put with AC II	iput						
V _{IN} (V _{RMS})	P _{IN} (W)	V _{OUT} (V)	I _{OUT} (A)	I _{ОUT} (%)	Efficiency at I _{OUT}	Efficiency 4pt-Average	Average Switching Frequency at Full Load					
	64.24	14.914	4.001	100%	0.9319		164 kHz					
265 I _{FL HI} range	48.46	19.919	3.002	75%	0.9282							
	32.86	14.922	2.002	50%	0.9150	0.9150						
IFL_HI lange	17.13	14.020	1.003	25%	0.8849							
	7.31	14.934	0.404	10%	0.8501							
	64.06	14.911	4.001	100%	0.9336		161 kHz					
	48.23	14.918	3.002	75%	0.9316	0.9213						
230 I _{FL_HI} range	32.59	14.923	2.002	50%	0.9212		0.9213					
	16.83	14.934	1.003	25%	0.8987							
	7.12	14.934	0.405	10%	0.8684							
	32.27	14.926	2.002	100%	0.9271	0.9150	_	1	_		1	198 kHz
	24.20	14.931	1.501	75%	0.9241							
115 I _{FL LO} range	16.43	14.932	1.003	50%	0.9135							
IFL_LO range	8.42	14.936	0.502	25%	0.8953							
	3.63	14.938	0.204	10%	0.8480							
	32.48	14.927	2.003	100%	0.9212		162 kHz					
	24.34	14.929	1.501	75%	0.9218	-						
90 I _{FL LO} range	16.50	14.932	1.005	50%	0.9105	0.9121						
IFL_LO Ialige	8.41	14.935	0.503	25%	0.8949	1						
	3.63	14.939	0.205	10%	0.8518							
For refer	rence: CoC Tier 2	2, 4pt-average effi	ciency ≥ 0.890 for	15 V, 60 W (at 23	30V _{RMS})							
For refe	erence: CoC Tier	2, 10%-load effic	iency ≥ 0.790 for	15 V, 60 W (at 230)V _{RMS})							

Table 8-2. Efficiency Test Data on 15-V Output with AC Input

8.3 Efficiency Typical Results Graphs with DC Inputs



8.4 Switching Frequency

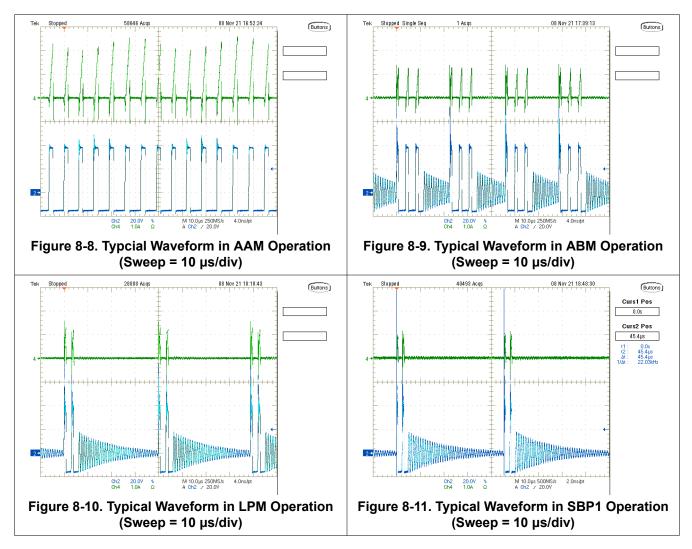
In the following waveforms, Ch2 (blue) = V_{DS} of SR-Mosfet at 10 V/div, 20 V/div, and 50 V/div, respectively (all AC-coupled), Ch4 (green) = Transformer Primary Winding Current at 1 A/div. Sweep speeds are 10 μ s/div, 10 μ s/div and 1 μ s/div, respectively.

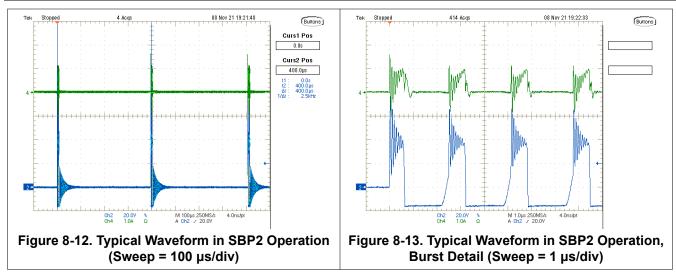
8.5 Key Switching Waveforms and Operating Mode Load Current

This section shows a table of typical load-current ranges within each operating mode in this design, at Vin = $250 V_{DC}$ and I_{FL_HI} range as an example. Following the table are typical waveforms seen while in each of the operating modes of Table 8-3. Hysteresis between modes results in differences between the modes' current ranges when load is decreasing compared to when load is increasing.

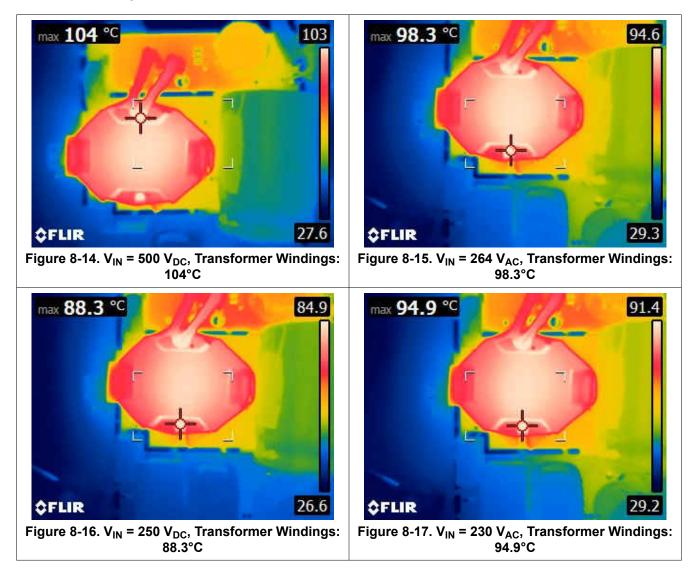
- AAM: Adaptive Amplitude Modulation
- · ABM: Adaptive Burst Mode
- LPM: Low Power Mode
- SBP1: First Standby Power Mode
- SBP2: Second Standby Power Mode

Table 8-3. Operating Modes and Load Currents at 250-\	/ Output in I _{FL HI} Range
---	--------------------------------------


Mode:	AAM	ABM	LPM	SBP1	SBP2
Typical Load Current (Decreasing)	4.0 A to 1.30 A	1.30 A to 0.41 A	0.41 A to 0.22 A	0.22 A to 0.09 A	0.09 A to 0 A
Typical Load Current (Increasing)	1.8 A to 4.0 A	0.53 A to 1.8 A	0.23 A to 0.53 A	0.14 A to 0.23 A	0 A to 0.14 A


Table 8-3.	Operating Modes	and Load Currents	s at 250-V Output i	n I _{FL}	_{HI} Range (co	ntinued)

Mode:	AAM	ABM	LPM	SBP1	SBP2
Burst Frequency, f _{BUR}	Not Applicable	> 25 kHz (2 to 9 pulses)	about 25 kHz (2 pulses)	8.5 kHz to 25 kHz (2 pulses)	< 8.5 kHz (2 pulses)


In the following waveforms, Ch2 (blue) = V_{DS} of SR-Mosfet at 20 V/div (AC-coupled), Ch4 (green) = Transformer Primary Winding Current at 1 A/div.

8.6 Thermal Images at Full Load (15 V, 4.0 A) with DC and AC Inputs

9 Transformer Details

The transformer (part number RLTI-1431) used on this design is wound on an RM8 core set. It is customdesigned for this EVM by Renco Electronics, Inc.

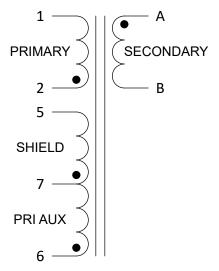


Figure 9-1. Transformer Schematic Diagram

PARAMETER	VALUE	PINS/LEADS	TEST CONDITIONS	
Magnetizing Inductance (µH)	160, ± 5%	2 – 1	Open all other pins, 150 kHz, 0.1 V	
Leakage Inductance (µH)	3.5 Max.	2 – 1	Short A - B, 150 kHz, 0.1 V	
D.C. Resistance (Ω)	0.24, ±15%	2 – 1		
D.C. Resistance (Ω)	0.007 Max.	A – B		
D.C. Resistance (Ω)	0.36, ±15%	6 – 7		
D.C. Resistance (Ω)	3.5, ±15%	7 – 5		
Dielectric (VAC, 60Hz)	3000	1,6 – A	1 s, 1 mA Max.	
Turns-Ratios	1 : 0.151 : 0.151	(2-1):(A-B):(6-7)	1.0 V @ 10 kHz to 2 - 1	

10 EVM Assembly and Layout

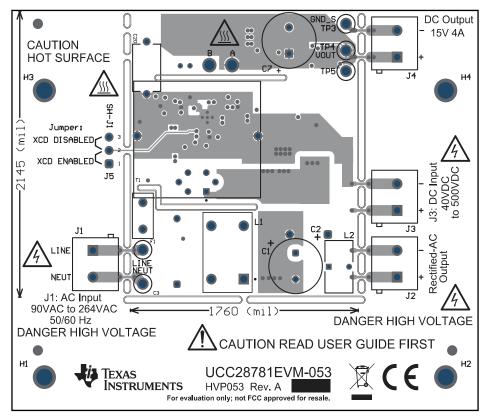
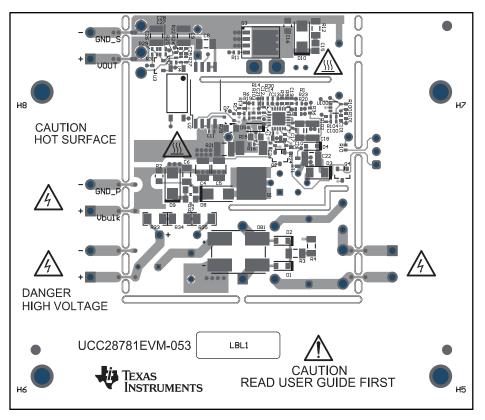



Figure 10-1. EVM Assembly (Top View)

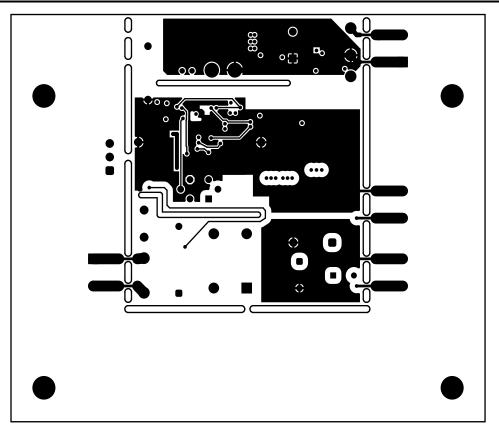
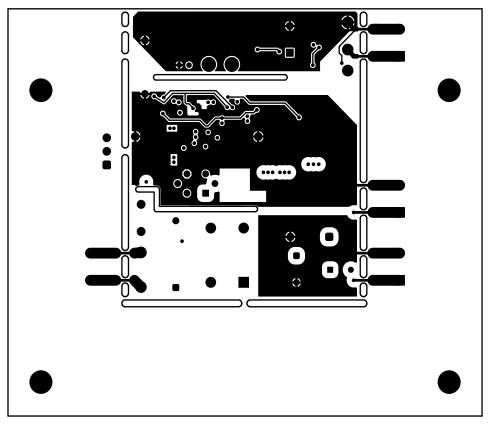



Figure 10-3. EVM Inner Signal Layer 1 (Top View)

11 List of Materials

UCC28781EVM-053 list of materials for the schematic diagrams shown in Section 5.

Table 11-1. UCC28781EVM-053 List of Materials

Designator	Quantity	Table 11-1. UCC28781EVM-053 List Description	PartNumber	Manufacturer
C1	1	CAP, AL, 15 µF, 400 V, +/- 20%, AEC-Q200 Grade 2, TH	UVC2G150MPD	Nichicon
C2	1	CAP, AL, 82 µF, 400 V, +/- 20%, TH	400BXW82MEFR18X25	Rubycon
C3	1	CAP, Film, 0.33 µF, X2 275 VAC, +/- 10%, TH	890324024003	Wurth Elektronik
	2			
C4, C5		CAP, CERM, 0.1 uF, 630 V, +/- 10%, X7R, 1210	C1210C104KBRAC7800	Kemet
C6	1	CAP, CERM, 1000 pF, 630 V, +/- 10%, X7R, 1206	GRM31BR72J102KW01L	MuRata
C7	1	CAP, Aluminum Polymer, 680 uF, 20 V, +/- 20%, 0.012 ohm, TH	APSG200ELL681MJB5S	Chemi-Con
C8	1	CAP, CERM, 10 µF, 25 V,+/- 5%, X7R, AEC-Q200 Grade 1, 1206	C1206C106J3RACAUTO	Kemet
C9, C26	2	CAP, CERM, 22 uF, 25 V, +/- 10%, X7R, 1210	GRM32ER71E226KE15L	MuRata
C10	1	CAP, CERM, 10 uF, 50 V, +/- 10%, X5R, 1206	C3216X5R1H106K160AB	TDK
C11, C17	2	CAP, CERM, 0.1 uF, 50 V, +/- 20%, X7R, 0402	GRM155R71H104ME14D	MuRata
C12	1	CAP, CERM, 0.22 uF, 16 V, +/- 10%, X7R, 0402	GRM155R71C224KA12D	MuRata
C13, C14	2	CAP, CERM, 330 pF, 50 V, +/- 10%, X7R, 0402	GRM155R71H331KA01D	MuRata
C16	1	CAP, CERM, 1500 pF, 250 V, +/- 10%, X7R, 0805	GRM21AR72E152KW01D	MuRata
C19, C21	2	CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0402	GRM1555C1H101JA01D	MuRata
C20	1	CAP, CERM, 2200 pF, X1 400 VAC/Y1 400 VAC, +/- 20%, Y5V, D9xL13mm	C921U222MVVDBA7317	Kemet
C22	1	CAP, CERM, 22 µF, 35 V,+/- 20%, X5R, 1210	GMK325BJ226MM-P	Taiyo Yuden
C23	1	CAP, CERM, 1 uF, 35 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0603	CGA3E1X7R1V105K080AC	ток
C24	1	CAP, CERM, 22 pF, 50 V, +/- 5%, C0G/NP0, AEC-Q200 Grade 1, 0402	GCM1555C1H220JA16D	MuRata
C25	1	CAP, CERM, 0.015 uF, 50 V, +/- 10%, X7R, 0402	GRM155R71H153KA12D	MuRata
C27	1	CAP, CERM, 0.01 uF, 50 V, +/- 10%, X7R, 0402	GRM155R71H103KA88D	MuRata
C15	0	Not used, 0805		
C18	0	Not used, 1210		
C28, C100, C101	0	Not used, 0402		
D1, D2	2	Diode, Standard Recovery Rectifier, 600 V, 0.2 A, 2x1.4mm	RFU02VSM6STR	Rohm
D3	1	Diode, Superfast Rectifier, 200 V, 1 A, 3.5x1.6mm	CSFMT104-HF	Comchip Technology
D5	1	Diode, Ultrafast, 100 V, 0.25 A, SOD-323	BAS316,115	Nexperia
D6	1	Diode, TVS, Bi, 18 V, SOD-323	CDSOD323-T18C	Bourns Inc.
D7	1	Diode, Schottky, 40 V, 0.2 A, SOT-323	BAS40W-05-7-F	Diodes Inc.
D8	1	Diode, Standard Recovery Rectifier, 1000 V, 1 A, AEC- Q101, SMA	MRA4007T3G	ON Semiconductor
D9	1	Diode, TVS, Uni, 150 V, 243 Vc, 400 W, 1.6 A, SMA	SMAJ150A	Littelfuse
D10	1	Diode, TVS, Uni, 120 V, 193 Vc, 400 W, 2.1 A, SMA	SMAJ120A	Littelfuse
D101	1	Diode, Ultrafast, 100 V, 0.3 A, SOD-523	1N4148XHE3	MCC
D101	1	Diode, Zener, 27V, 400mW, SOD-323	PDZ27B, 115	Nexperian
D102	1	Diode, Zener, 39V, 200mW, SOD-523	BZT52C39T-TP	MCC
	0	Not used, SOD-323		
D4	-	,		Comphin Technolog
DB1	1	Diode, P-N-Bridge, 600 V, 4 A, Z4-D	Z4DGP406L-HF	Comchip Technology
F1	1	Fuse, 3.15 A, 250VAC/VDC, TH	39213150000	Littelfuse
J1, J2, J3, J4	4	Terminal Block, 5.08 mm, 2x1, Brass, TH	ED120/2DS	On-Shore Technology

	Table 11-1. UCC28781EVM-053 List of Materials (continued)			
Designator	Quantity	Description	PartNumber	Manufacturer
J5	1	Header, 100mil, 3x1, Gold, TH	TSW-103-07-G-S	Samtec
L1	1	Common Mode Choke, 2.3mH 35%, 0.6x0.38x0.75 IN	RLTI-1387	Renco
L2	1	WE-FI Leaded Toroidal Line Choke	7447052	Wurth
Q1	1	MOSFET, N-CH, 800 V, 8 A, DPAK	IPD80R600P7ATMA1	Infineon Technologies
Q2	1	MOSFET, N-CH, Depletion Mode, 800 V, SOT-23	CPC3982TTR	IXYS
Q3	1	MOSFET, N-CH, 150 V, 87 A, PG-TDSON-8	BSC093N15NS5ATMA1	Infineon Technologies
Q4	1	MOSFET, N-CH, Depletion Mode, 100 V, 0.17 A, AEC- Q101, SOT-23	BSS126H6327XTSA2	Infineon Technologies
Q100	1	BJT, PNP, 40 V, 200mA, SOT-323	MMBT3906W_R1_00001	Panjit
R1	1	RES, 3.32 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	'CRCW04023K32FKED	Vishay-Dale
R2	1	RES, 470 k, 5%, 0.125 W, AEC-Q200 Grade 0, 0805	CRCW0805470KJNEA	Vishay-Dale
R3, R4	2	RES, 13 k, 5%, 0.25 W, AEC-Q200 Grade 0, 1206	CRCW120613K0JNEA	Vishay-Dale
R5, R7	2	RES, 15, 5%, 0.125 W, AEC-Q200 Grade 0, 0805	CRCW080515R0JNEA	Vishay-Dale
R8	1	RES, 169 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW0402169KFKED	Vishay-Dale
R9	1	RES, 93.1 k, 1%, 0.063 W, 0402	RC0402FR-0793K1L	Yageo America
R10, R17	2	RES, 0, 0%, 0.2 W, AEC-Q200 Grade 0, 0402	CRCW04020000Z0EDHP	Vishay-Dale
R11	1	RES, 10, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040210R0JNED	Vishay-Dale
R13	1	RES, 39.2 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040239K2FKED	Vishay-Dale
R14	1	RES, 191 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW0402191KFKED	Vishay-Dale
R15	1	RES, 100, 5%, 0.125 W, AEC-Q200 Grade 0, 0805	CRCW0805100RJNEA	Vishay-Dale
R16, R29, R110	3	RES, 10.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040210K0FKED	Vishay-Dale
R18, R27	2	RES, 511, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW0402511RFKED	Vishay-Dale
R19	1	RES, 402, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW0402402RFKED	Vishay-Dale
R20	1	RES, 15.4 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040215K4FKED	Vishay-Dale
R21	1	RES, 0.22, 1%, 0.5 W, 1210	MCR25JZHFLR220	Rohm
R22, R103	2	RES, 0, 5%, 0.063 W, 0402	RC0402JR-070RL	Yageo America
R23	1	RES, 6.98 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04026K98FKED	Vishay-Dale
R24	1	RES, 1.0 M, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04021M00JNED	Vishay-Dale
R25	1	RES, 150 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0402	ERJ-2RKF1503X	Panasonic
R26	1	RES, 15.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040215K0FKED	Vishay-Dale
R28	1	RES, 0.68, 1%, 0.125 W, AEC-Q200 Grade 0, 0805	ERJ-6RQFR68V	Panasonic
R30	1	RES, 20.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040220K0FKED	Vishay-Dale
R31	1	RES, 30.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040230K0FKED	Vishay-Dale
R32	1	'RES, 5.62 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04025K62FKED	Vishay-Dale
R33, R34, R35	3	RES, 220 k, 5%, 0.25 W, AEC-Q200 Grade 0, 1206	CRCW1206220KJNEA	Vishay-Dale
R105, R106	2	RES, 2.1 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04022K10FNED	Vishay-Dale
R107	1	RES, 1.0 M, 5%, 0.100 W, AEC-Q200 Grade 0, 0603	CRCW06031M00JKED	Vishay-Dale
R108	1	RES, 27.4 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040227K4FKED	Vishay-Dale
R109	1	RES, 1.00 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04021K00FKED	Vishay-Dale
R6, R36, R100, R101, R102, R104	0	Not used, 0402		
R12	0	Not used, 1206		
RT1	1	Thermistor NTC, 47k ohm, 5%, 0603	NCP18WB473J03RB	MuRata
SH-J1	1	Shunt, 100mil, Tin plated, Black	SNT-100-BK-T-H	Samtec
T1	1	160uH TRANSFORMER	RLTI-1431	Renco Electronics

Table 11-1. UCC28781EVM-053 List of Materials (continued)

Designator	Quantity	Description	PartNumber	Manufacturer
TP1, TP3	2	Test Point, Multipurpose, Black, TH	5011	Keystone
TP2, TP4, TP5	3	Test Point, Multipurpose, White, TH	5012	Keystone
U1	1	UCC28781-Q1, RTW0024B (WQFN-24)	UCC28781QRTWRQ1	Texas Instruments
U2	1	4-A/6-A, Single-Channel Reinforced Isolation Gate Driver with High Noise Immunity, DWV0008A (SOIC-8)	UCC5304DWV	Texas Instruments
U3	1	2.5V Low Iq Adjustable Precision Shunt Regulator, DBZ0003A (SOT-23-3)	ATL431AIDBZR	Texas Instruments
U4	1	Optoisolator Transistor Output 5000Vrms 1 Channel 6- SO	TLP383(GR-TPL,E)	Toshiba
U100	0	Not used, SC70-5		

Table 11-1. UCC28781EVM-053 List of Materials (continued)

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated